亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Robust Deep Learning Enabled Semantic Communication System for Text

计算机科学 语义计算 噪音(视频) 人工智能 语义网格 自然语言处理 语音识别 语义网 图像(数学)
作者
Xiang Peng,Zhijin Qin,Danlan Huang,Xiaoming Tao,Jianhua Lü,Guangyi Liu,Chengkang Pan
标识
DOI:10.1109/globecom48099.2022.10000901
摘要

With the advent of the 6G era, the concept of semantic communication has attracted increasing attention. Compared with conventional communication systems, semantic communication systems are not only affected by physical noise existing in the wireless communication environment, e.g., additional white Gaussian noise, but also by semantic noise due to the source and the nature of deep learning-based systems. In this paper, we elaborate on the mechanism of semantic noise. In particular, we categorize semantic noise into two categories: literal semantic noise and adversarial semantic noise. The former is caused by written errors or expression ambiguity, while the latter is caused by perturbations or attacks added to the embedding layer via the semantic channel. To prevent semantic noise from influencing semantic communication systems, we present a robust deep learning enabled semantic communication system (R-DeepSC) that leverages a calibrated self-attention mechanism and adversarial training to tackle semantic noise. Compared with baseline models that only consider physical noise for text transmission, the proposed R-DeepSC achieves remarkable performance in dealing with semantic noise under different signal-to-noise ratios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
澜生完成签到,获得积分10
3秒前
5秒前
澜生发布了新的文献求助10
7秒前
Hello应助松松采纳,获得10
10秒前
DY901004完成签到,获得积分20
15秒前
19秒前
21秒前
松松发布了新的文献求助10
22秒前
ff发布了新的文献求助10
26秒前
27秒前
bruna发布了新的文献求助30
27秒前
orixero应助松松采纳,获得10
32秒前
Ryuki完成签到 ,获得积分10
32秒前
Omni完成签到,获得积分10
42秒前
ff完成签到,获得积分10
44秒前
45秒前
善学以致用应助ff采纳,获得10
48秒前
小邸应助科研通管家采纳,获得10
51秒前
小邸应助科研通管家采纳,获得10
51秒前
大模型应助科研通管家采纳,获得10
51秒前
小邸应助科研通管家采纳,获得10
52秒前
今后应助科研通管家采纳,获得10
52秒前
xftx发布了新的文献求助30
53秒前
54秒前
认真的白易完成签到,获得积分10
56秒前
56秒前
Jasper应助zwl采纳,获得10
59秒前
1分钟前
1分钟前
1分钟前
科研通AI6应助曹能豪采纳,获得10
1分钟前
丘比特应助优秀的张四月采纳,获得10
1分钟前
JamesPei应助汤人雄采纳,获得10
1分钟前
李健应助CC采纳,获得10
1分钟前
李健的小迷弟应助十月采纳,获得10
1分钟前
1分钟前
Hello应助汤人雄采纳,获得10
1分钟前
1分钟前
1分钟前
WeiMooo完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581559
求助须知:如何正确求助?哪些是违规求助? 3999491
关于积分的说明 12381352
捐赠科研通 3674182
什么是DOI,文献DOI怎么找? 2024857
邀请新用户注册赠送积分活动 1058733
科研通“疑难数据库(出版商)”最低求助积分说明 945497