计算机科学
语义计算
噪音(视频)
人工智能
语义网格
自然语言处理
语音识别
语义网
图像(数学)
作者
Xiang Peng,Zhijin Qin,Danlan Huang,Xiaoming Tao,Jianhua Lü,Guangyi Liu,Chengkang Pan
标识
DOI:10.1109/globecom48099.2022.10000901
摘要
With the advent of the 6G era, the concept of semantic communication has attracted increasing attention. Compared with conventional communication systems, semantic communication systems are not only affected by physical noise existing in the wireless communication environment, e.g., additional white Gaussian noise, but also by semantic noise due to the source and the nature of deep learning-based systems. In this paper, we elaborate on the mechanism of semantic noise. In particular, we categorize semantic noise into two categories: literal semantic noise and adversarial semantic noise. The former is caused by written errors or expression ambiguity, while the latter is caused by perturbations or attacks added to the embedding layer via the semantic channel. To prevent semantic noise from influencing semantic communication systems, we present a robust deep learning enabled semantic communication system (R-DeepSC) that leverages a calibrated self-attention mechanism and adversarial training to tackle semantic noise. Compared with baseline models that only consider physical noise for text transmission, the proposed R-DeepSC achieves remarkable performance in dealing with semantic noise under different signal-to-noise ratios.
科研通智能强力驱动
Strongly Powered by AbleSci AI