材料科学
自愈水凝胶
微尺度化学
复合材料
纳米纤维素
纳米技术
纤维素
化学工程
数学
工程类
数学教育
高分子化学
作者
Xiao Guo,Xinyu Dong,Guijin Zou,Huajian Gao,Wei Zhai
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2023-01-11
卷期号:9 (2)
被引量:74
标识
DOI:10.1126/sciadv.adf7075
摘要
Tough natural materials such as nacre, bone, and silk exhibit multiscale hierarchical structures where distinct toughening mechanisms occur at each level of the hierarchy, ranging from molecular uncoiling to microscale fibrillar sliding to macroscale crack deflection. An open question is whether and how the multiscale design motifs of natural materials can be translated to the development of next-generation biomimetic hydrogels. To address this challenge, we fabricate strong and tough hydrogel with architected multiscale hierarchical structures using a freeze-casting-assisted solution substitution strategy. The underlying multiscale multimechanisms are attributed to the gel's hierarchical structures, including microscale anisotropic honeycomb-structured fiber walls and matrix, with a modulus of 8.96 and 0.73 MPa, respectively; hydrogen bond-enhanced fibers with nanocrystalline domains; and cross-linked strong polyvinyl alcohol chains with chain-connecting ionic bonds. This study establishes a blueprint of structure-performance mechanisms in tough hierarchically structured hydrogels and can inspire advanced design strategies for other promising hierarchical materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI