Fast Multi-View Clustering Via Ensembles: Towards Scalability, Superiority, and Simplicity

计算机科学 聚类分析 可扩展性 人工智能 数据库
作者
Dong Huang,Chang‐Dong Wang,Jianhuang Lai
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11388-11402 被引量:61
标识
DOI:10.1109/tkde.2023.3236698
摘要

Despite significant progress, there remain three limitations to the previous multi-view clustering algorithms. First, they often suffer from high computational complexity, restricting their feasibility for large-scale datasets. Second, they typically fuse multi-view information via one-stage fusion, neglecting the possibilities in multi-stage fusions. Third, dataset-specific hyperparameter-tuning is frequently required, further undermining their practicability. In light of this, we propose a fast multi-view clustering via ensembles (FastMICE) approach. Particularly, the concept of random view groups is presented to capture the versatile view-wise relationships, through which the hybrid early-late fusion strategy is designed to enable efficient multi-stage fusions. With multiple views extended to many view groups, three levels of diversity (w.r.t. features, anchors, and neighbors, respectively) are jointly leveraged for constructing the view-sharing bipartite graphs in the early-stage fusion. Then, a set of diversified base clusterings for different view groups are obtained via fast graph partitioning, which are further formulated into a unified bipartite graph for final clustering in the late-stage fusion. Notably, FastMICE has almost linear time and space complexity, and is free of dataset-specific tuning. Experiments on 22 multi-view datasets demonstrate its advantages in scalability (for extremely large datasets), superiority (in clustering performance), and simplicity (to be applied) over the state-of-the-art. Code available: https://github.com/huangdonghere/FastMICE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
juneJ发布了新的文献求助10
1秒前
maox1aoxin应助Asuka采纳,获得30
1秒前
2秒前
能干发夹发布了新的文献求助10
3秒前
凡凡发布了新的文献求助10
3秒前
zoey完成签到,获得积分10
3秒前
4秒前
Ava应助研友_Z7WQzZ采纳,获得10
4秒前
天天快乐应助润润轩轩采纳,获得10
5秒前
夏夏发布了新的文献求助10
5秒前
5秒前
通通通发布了新的文献求助30
6秒前
Johnlian发布了新的文献求助200
6秒前
7秒前
田様应助limin采纳,获得10
7秒前
Doctor.Xie完成签到,获得积分10
7秒前
7秒前
Febrine0502发布了新的文献求助10
8秒前
8秒前
lcj1014发布了新的文献求助10
9秒前
打打应助格兰德法泽尔采纳,获得10
9秒前
9秒前
10秒前
10秒前
研究生发布了新的文献求助10
10秒前
和平使命应助又you采纳,获得10
11秒前
科目三应助淡然的宛秋采纳,获得10
11秒前
深情安青应助kazu采纳,获得30
11秒前
小于完成签到,获得积分10
12秒前
12秒前
深情安青应助lalala采纳,获得10
12秒前
鑫搭发布了新的文献求助10
12秒前
机灵水卉完成签到 ,获得积分10
12秒前
12秒前
reeve完成签到,获得积分10
13秒前
fifteen应助bbczj采纳,获得10
13秒前
9℃发布了新的文献求助10
14秒前
充电宝应助耍酷的斩采纳,获得10
14秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524791
求助须知:如何正确求助?哪些是违规求助? 3105629
关于积分的说明 9275262
捐赠科研通 2802831
什么是DOI,文献DOI怎么找? 1538211
邀请新用户注册赠送积分活动 716120
科研通“疑难数据库(出版商)”最低求助积分说明 709191