Fast Multi-View Clustering Via Ensembles: Towards Scalability, Superiority, and Simplicity

计算机科学 聚类分析 可扩展性 人工智能 数据库
作者
Dong Huang,Chang‐Dong Wang,Jianhuang Lai
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11388-11402 被引量:61
标识
DOI:10.1109/tkde.2023.3236698
摘要

Despite significant progress, there remain three limitations to the previous multi-view clustering algorithms. First, they often suffer from high computational complexity, restricting their feasibility for large-scale datasets. Second, they typically fuse multi-view information via one-stage fusion, neglecting the possibilities in multi-stage fusions. Third, dataset-specific hyperparameter-tuning is frequently required, further undermining their practicability. In light of this, we propose a fast multi-view clustering via ensembles (FastMICE) approach. Particularly, the concept of random view groups is presented to capture the versatile view-wise relationships, through which the hybrid early-late fusion strategy is designed to enable efficient multi-stage fusions. With multiple views extended to many view groups, three levels of diversity (w.r.t. features, anchors, and neighbors, respectively) are jointly leveraged for constructing the view-sharing bipartite graphs in the early-stage fusion. Then, a set of diversified base clusterings for different view groups are obtained via fast graph partitioning, which are further formulated into a unified bipartite graph for final clustering in the late-stage fusion. Notably, FastMICE has almost linear time and space complexity, and is free of dataset-specific tuning. Experiments on 22 multi-view datasets demonstrate its advantages in scalability (for extremely large datasets), superiority (in clustering performance), and simplicity (to be applied) over the state-of-the-art. Code available: https://github.com/huangdonghere/FastMICE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XiYao发布了新的文献求助10
1秒前
桃子发布了新的文献求助10
2秒前
阿诺发布了新的文献求助10
4秒前
4秒前
Jasper应助XiYao采纳,获得10
5秒前
5秒前
天天快乐应助Nayuta48采纳,获得10
5秒前
材料诚完成签到,获得积分10
5秒前
6秒前
7秒前
彭于晏应助桃子采纳,获得10
8秒前
蠢蠢的死法完成签到,获得积分10
8秒前
spngebob94完成签到,获得积分10
10秒前
X7完成签到,获得积分10
10秒前
saikun发布了新的文献求助10
11秒前
11秒前
spngebob94发布了新的文献求助10
12秒前
12秒前
shade66666发布了新的文献求助10
13秒前
13秒前
打打应助大王采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
zzzmmmhhh发布了新的文献求助10
15秒前
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
无花果应助spngebob94采纳,获得10
16秒前
16秒前
17秒前
weiwei发布了新的文献求助10
21秒前
zero完成签到,获得积分10
23秒前
王鑫玥发布了新的文献求助10
24秒前
高大手链完成签到 ,获得积分10
25秒前
华仔应助安然采纳,获得10
26秒前
会游泳的思维应助weiwei采纳,获得10
27秒前
完美世界应助weiwei采纳,获得10
27秒前
rong应助weiwei采纳,获得10
27秒前
研友_VZG7GZ应助weiwei采纳,获得10
27秒前
丘比特应助weiwei采纳,获得10
27秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053642
求助须知:如何正确求助?哪些是违规求助? 2710842
关于积分的说明 7423746
捐赠科研通 2355391
什么是DOI,文献DOI怎么找? 1247143
科研通“疑难数据库(出版商)”最低求助积分说明 606239
版权声明 595992