亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Federated Learning over LEO Satellite

电信线路 计算机科学 瓶颈 通信卫星 卫星 实时计算 分布式计算 计算机网络 工程类 航空航天工程 嵌入式系统
作者
Yiji Wang,Cheng Zou,Dingzhu Wen,Yuanming Shi
标识
DOI:10.1109/gcwkshps56602.2022.10008719
摘要

The rapid development of low earth orbit (LEO) satellite communication has driven the deployment of artificial intelligence (AI) in space, providing various intelligent services like real-time disaster navigation, global pandemic spread detection, etc. To this end, a space-ground communication based satellite federated learning framework is proposed in this work. In the framework, a LEO satellite works as a server and collaboratively trains an AI model with multiple ground devices distributed in a large remote area, where there are no ground access points (APs) due to the expensive cost. To overcome the communication bottleneck and address the new challenge arising from the satellite-ground communication channel model, we propose an over-the-air computation (AirComp) based FL scheme and take into account the influence of both uplink and downlink communications. Then, the convergence bound is analyzed in the proposed scheme, where the optimality gap in each training iteration depends on two individual factors, i.e., the downlink and uplink errors. Accordingly, two sub-problems are formulated to minimize the two kinds of errors. The downlink sub-problem is convex and can be addressed by the well-known CVX toolbox. For the non-convex uplink problem, inspired by the successive convex approximation (SCA) algorithm, we propose a SCA-based bounded perturbation (BSBP) algorithm. Extensive numerical results show that the proposed algorithm can significantly enhance the FL performance with low complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
碧蓝傲南发布了新的文献求助10
7秒前
852应助碧蓝傲南采纳,获得30
19秒前
19秒前
西西完成签到,获得积分10
23秒前
阿俊完成签到 ,获得积分10
28秒前
33秒前
有只kangaroo完成签到,获得积分10
45秒前
sunny完成签到 ,获得积分10
47秒前
俩q完成签到 ,获得积分10
53秒前
CipherSage应助square采纳,获得10
56秒前
1分钟前
Grsia完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Omni发布了新的文献求助10
1分钟前
梦回唐朝发布了新的文献求助10
1分钟前
随性随缘随命完成签到 ,获得积分10
1分钟前
1分钟前
OG发布了新的文献求助20
1分钟前
慕青应助叶思言采纳,获得10
1分钟前
1分钟前
科研通AI2S应助XiYang采纳,获得10
1分钟前
1分钟前
间质发布了新的文献求助10
1分钟前
Geist完成签到 ,获得积分10
1分钟前
松子的ee完成签到 ,获得积分10
2分钟前
小刘完成签到,获得积分10
2分钟前
李爱国应助无语的棉花糖采纳,获得50
2分钟前
共享精神应助斯文哈密瓜采纳,获得10
2分钟前
Jason完成签到 ,获得积分10
2分钟前
2分钟前
Ricochet完成签到,获得积分10
2分钟前
Very完成签到 ,获得积分20
2分钟前
2分钟前
慕青应助xuan采纳,获得10
3分钟前
乐乐应助科研通管家采纳,获得10
3分钟前
驿寄梅花发布了新的文献求助10
3分钟前
Jasper应助啵啵龙采纳,获得10
3分钟前
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307345
求助须知:如何正确求助?哪些是违规求助? 2941006
关于积分的说明 8500089
捐赠科研通 2615318
什么是DOI,文献DOI怎么找? 1428830
科研通“疑难数据库(出版商)”最低求助积分说明 663581
邀请新用户注册赠送积分活动 648410