ChatGPT for Textual Analysis? How to Use Generative LLMs in Accounting Research

生成语法 会计 经济 计算机科学 人工智能
作者
Ties de Kok
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:14
标识
DOI:10.1287/mnsc.2023.03253
摘要

Generative large language models (GLLMs), such as ChatGPT and GPT-4 by OpenAI, are emerging as powerful tools for textual analysis tasks in accounting research. GLLMs can solve any textual analysis task solvable using nongenerative methods as well as tasks previously only solvable using human coding. Whereas GLLMs are new and powerful, they also come with limitations and present new challenges that require care and due diligence. This paper highlights the applications of GLLMs for accounting research and compares them with existing methods. It also provides a framework on how to effectively use GLLMs by addressing key considerations, such as model selection, prompt engineering, and ensuring construct validity. In a case study, I demonstrate the capabilities of GLLMs by detecting nonanswers in earnings conference calls, a traditionally challenging task to automate. The new GPT method achieves an accuracy of 96% and reduces the nonanswer error rate by 70% relative to the existing Gow et al. (2021) method. Finally, I discuss the importance of addressing bias, replicability, and data sharing concerns when using GLLMs. Taken together, this paper provides researchers, reviewers, and editors with the knowledge and tools to effectively use and evaluate GLLMs for academic research. This paper was accepted by Eric So, accounting. Funding: Supported by the Foster School of Business – University of Washington. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.03253 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fanglin123完成签到,获得积分10
1秒前
Owen应助王哪跑12采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
隐形曼青应助吴志新采纳,获得10
2秒前
2秒前
2秒前
2秒前
清爽千亦关注了科研通微信公众号
2秒前
冷茗完成签到,获得积分10
2秒前
临风浩歌完成签到,获得积分10
2秒前
忐忑的雪糕完成签到 ,获得积分0
3秒前
3秒前
心旷神怡完成签到,获得积分10
3秒前
生动从寒完成签到,获得积分10
4秒前
大方小白发布了新的文献求助10
4秒前
领导范儿应助李玲玲采纳,获得10
5秒前
5秒前
大胆隶完成签到,获得积分10
6秒前
6秒前
yyyhhh发布了新的文献求助10
7秒前
7秒前
Shauna发布了新的文献求助10
7秒前
脑洞疼应助浮浮世世采纳,获得10
8秒前
彭于晏应助查查采纳,获得10
8秒前
yaowei关注了科研通微信公众号
8秒前
Zymiao完成签到,获得积分20
8秒前
9秒前
10秒前
10秒前
许子健发布了新的文献求助10
10秒前
11秒前
孤独依波发布了新的文献求助20
11秒前
11秒前
觅夏发布了新的文献求助10
12秒前
爆米花应助梓榆采纳,获得10
12秒前
Lucas应助浮浮世世采纳,获得10
14秒前
baobao发布了新的文献求助10
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646