ChatGPT for Textual Analysis? How to Use Generative LLMs in Accounting Research

生成语法 会计 经济 计算机科学 人工智能
作者
Ties de Kok
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:3
标识
DOI:10.1287/mnsc.2023.03253
摘要

Generative large language models (GLLMs), such as ChatGPT and GPT-4 by OpenAI, are emerging as powerful tools for textual analysis tasks in accounting research. GLLMs can solve any textual analysis task solvable using nongenerative methods as well as tasks previously only solvable using human coding. Whereas GLLMs are new and powerful, they also come with limitations and present new challenges that require care and due diligence. This paper highlights the applications of GLLMs for accounting research and compares them with existing methods. It also provides a framework on how to effectively use GLLMs by addressing key considerations, such as model selection, prompt engineering, and ensuring construct validity. In a case study, I demonstrate the capabilities of GLLMs by detecting nonanswers in earnings conference calls, a traditionally challenging task to automate. The new GPT method achieves an accuracy of 96% and reduces the nonanswer error rate by 70% relative to the existing Gow et al. (2021) method. Finally, I discuss the importance of addressing bias, replicability, and data sharing concerns when using GLLMs. Taken together, this paper provides researchers, reviewers, and editors with the knowledge and tools to effectively use and evaluate GLLMs for academic research. This paper was accepted by Eric So, accounting. Funding: Supported by the Foster School of Business – University of Washington. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.03253 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助满意之玉采纳,获得10
刚刚
1秒前
Jing完成签到,获得积分10
2秒前
饕餮发布了新的文献求助10
2秒前
3秒前
3秒前
wqy完成签到,获得积分10
3秒前
犹豫的戎完成签到,获得积分20
3秒前
狗子完成签到 ,获得积分10
4秒前
CodeCraft应助小小飞采纳,获得10
4秒前
JamesPei应助JUSTs0so采纳,获得10
6秒前
Beth完成签到,获得积分10
6秒前
粥粥发布了新的文献求助10
7秒前
7秒前
庞威完成签到 ,获得积分10
7秒前
8秒前
吕春雨完成签到,获得积分10
8秒前
Grayball应助ccc采纳,获得10
8秒前
9秒前
9秒前
勖勖完成签到,获得积分10
9秒前
邵裘发布了新的文献求助10
9秒前
9秒前
饕餮完成签到,获得积分10
10秒前
11秒前
wangg发布了新的文献求助10
11秒前
大个应助勤恳的依丝采纳,获得10
12秒前
星星发布了新的文献求助10
12秒前
spray发布了新的文献求助30
12秒前
LZJ完成签到,获得积分10
12秒前
13秒前
YE发布了新的文献求助30
13秒前
MHB应助叫滚滚采纳,获得10
14秒前
wzxxxx发布了新的文献求助10
14秒前
斯文败类应助勤劳傲晴采纳,获得10
15秒前
shilong.yang发布了新的文献求助10
15秒前
momo完成签到,获得积分10
16秒前
wxp_bioinfo完成签到,获得积分10
17秒前
17秒前
桐桐应助wangg采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808