ChatGPT for Textual Analysis? How to Use Generative LLMs in Accounting Research

生成语法 会计 经济 计算机科学 人工智能
作者
Ties de Kok
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2023.03253
摘要

Generative large language models (GLLMs), such as ChatGPT and GPT-4 by OpenAI, are emerging as powerful tools for textual analysis tasks in accounting research. GLLMs can solve any textual analysis task solvable using nongenerative methods as well as tasks previously only solvable using human coding. Whereas GLLMs are new and powerful, they also come with limitations and present new challenges that require care and due diligence. This paper highlights the applications of GLLMs for accounting research and compares them with existing methods. It also provides a framework on how to effectively use GLLMs by addressing key considerations, such as model selection, prompt engineering, and ensuring construct validity. In a case study, I demonstrate the capabilities of GLLMs by detecting nonanswers in earnings conference calls, a traditionally challenging task to automate. The new GPT method achieves an accuracy of 96% and reduces the nonanswer error rate by 70% relative to the existing Gow et al. (2021) method. Finally, I discuss the importance of addressing bias, replicability, and data sharing concerns when using GLLMs. Taken together, this paper provides researchers, reviewers, and editors with the knowledge and tools to effectively use and evaluate GLLMs for academic research. This paper was accepted by Eric So, accounting. Funding: Supported by the Foster School of Business – University of Washington. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.03253 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卢孤菱完成签到,获得积分10
刚刚
852应助炙热的雨旋采纳,获得10
1秒前
Az完成签到 ,获得积分10
2秒前
niii完成签到 ,获得积分10
2秒前
打打应助端庄栾采纳,获得10
2秒前
kdshen完成签到,获得积分10
3秒前
哆啦小鱼完成签到,获得积分10
3秒前
4秒前
weiziho发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
Cyber_relic完成签到,获得积分0
8秒前
ocean发布了新的文献求助10
9秒前
bkagyin应助加菲丰丰采纳,获得30
9秒前
9秒前
srui发布了新的文献求助10
10秒前
李子关注了科研通微信公众号
10秒前
sad发布了新的文献求助10
10秒前
11秒前
汉堡包应助zzzz采纳,获得10
11秒前
1461644768完成签到,获得积分10
13秒前
飘逸数据线完成签到,获得积分10
15秒前
15秒前
情怀应助ocean采纳,获得10
15秒前
寂寞的访冬完成签到,获得积分20
16秒前
youger发布了新的文献求助10
17秒前
wanci应助龙行天下采纳,获得10
18秒前
Isi发布了新的文献求助10
20秒前
小匹夫完成签到,获得积分10
20秒前
suling完成签到,获得积分10
20秒前
WonderHua应助zz采纳,获得10
21秒前
wax应助五号男嘉宾采纳,获得10
21秒前
21秒前
opair发布了新的文献求助50
23秒前
ZKJ完成签到,获得积分10
23秒前
23秒前
能干的小伙完成签到,获得积分10
25秒前
26秒前
凶狠的清发布了新的文献求助10
27秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330040
求助须知:如何正确求助?哪些是违规求助? 2959654
关于积分的说明 8596227
捐赠科研通 2638022
什么是DOI,文献DOI怎么找? 1444115
科研通“疑难数据库(出版商)”最低求助积分说明 668935
邀请新用户注册赠送积分活动 656517