ChatGPT for Textual Analysis? How to Use Generative LLMs in Accounting Research

生成语法 会计 经济 计算机科学 人工智能
作者
Ties de Kok
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:71 (9): 7888-7906 被引量:41
标识
DOI:10.1287/mnsc.2023.03253
摘要

Generative large language models (GLLMs), such as ChatGPT and GPT-4 by OpenAI, are emerging as powerful tools for textual analysis tasks in accounting research. GLLMs can solve any textual analysis task solvable using nongenerative methods as well as tasks previously only solvable using human coding. Whereas GLLMs are new and powerful, they also come with limitations and present new challenges that require care and due diligence. This paper highlights the applications of GLLMs for accounting research and compares them with existing methods. It also provides a framework on how to effectively use GLLMs by addressing key considerations, such as model selection, prompt engineering, and ensuring construct validity. In a case study, I demonstrate the capabilities of GLLMs by detecting nonanswers in earnings conference calls, a traditionally challenging task to automate. The new GPT method achieves an accuracy of 96% and reduces the nonanswer error rate by 70% relative to the existing Gow et al. (2021) method. Finally, I discuss the importance of addressing bias, replicability, and data sharing concerns when using GLLMs. Taken together, this paper provides researchers, reviewers, and editors with the knowledge and tools to effectively use and evaluate GLLMs for academic research. This paper was accepted by Eric So, accounting. Funding: Supported by the Foster School of Business – University of Washington. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.03253 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绵羊座鸭梨完成签到 ,获得积分10
1秒前
科研通AI2S应助kli采纳,获得10
1秒前
健忘的访文完成签到,获得积分10
2秒前
小九没烦恼完成签到,获得积分10
3秒前
4秒前
5秒前
飞常爱你哦完成签到 ,获得积分10
5秒前
mix完成签到 ,获得积分10
5秒前
里里完成签到 ,获得积分10
6秒前
woobinhua完成签到,获得积分10
6秒前
zyq完成签到,获得积分10
8秒前
东山发布了新的文献求助10
8秒前
丫丫完成签到 ,获得积分10
9秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
kli完成签到,获得积分10
14秒前
栗子完成签到 ,获得积分10
14秒前
MRu发布了新的文献求助10
16秒前
认真丹亦完成签到 ,获得积分10
16秒前
17秒前
章鱼小丸子完成签到,获得积分10
21秒前
北夏暖完成签到,获得积分10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
23秒前
carly完成签到 ,获得积分10
25秒前
无敌科研大王完成签到,获得积分10
27秒前
evidence发布了新的文献求助10
28秒前
娟儿完成签到 ,获得积分10
28秒前
29秒前
LS完成签到,获得积分10
29秒前
西柚完成签到 ,获得积分10
29秒前
31秒前
睿O宝宝O完成签到 ,获得积分10
32秒前
杨杨杨完成签到,获得积分10
32秒前
紫沫完成签到,获得积分10
32秒前
CMY完成签到,获得积分10
33秒前
斯文老太完成签到,获得积分10
33秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450513
求助须知:如何正确求助?哪些是违规求助? 4558247
关于积分的说明 14265829
捐赠科研通 4481797
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421882