亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FlightKoopman: Deep Koopman for Multi-Dimensional Flight Trajectory Prediction

计算机科学 弹道 人工智能 天文 物理
作者
Jing Lu,Jingjun Jiang,Yidan Bai,Wenxiang Dai,Wei Zhang
出处
期刊:International Journal of Computational Intelligence and Applications [World Scientific]
标识
DOI:10.1142/s146902682450038x
摘要

Multi-dimensional Flight Trajectory Prediction (MFTP) in Flight Operations Quality Assessment (FOQA) refers to the estimation of flight status at the future time, accurate prediction future flight positions, flight attitude and aero-engine monitoring parameters are its goals. Due to differences between flight trajectories and other kinds trajectories and difficult access to data and complex domain knowledge, MFTP in FOQA is much more challenging than Flight Trajectory Prediction (FTP) in Air Traffic Control (ATC) and other trajectory prediction. In this work, a deep Koopman neural operator-based multi-dimensional flight trajectory prediction framework, called Deep Koopman Neural Operator-Based Multi-Dimensional Flight Trajectories Prediction (FlightKoopman), is first proposed to address this challenge. This framework is based on data-driven Koopman theory, enables to construct a prediction model using only data without any prior knowledge, and approximate operator pattern to capture flight maneuver for downstream tasks. The framework recovers the complete state space of the flight dynamics system with Hankle embedding and reconstructs its phase space, and combines a fully connected neural network to generate the observation function of the state space and the approximation matrix of the Koopman operator to obtain an overall model for predicting the evolution. The paper also reveals a virgin dataset Civil Aviation Flight University of China (CAFUC) that could be used for MFTP tasks or other flight trajectory tasks. CAFUC Datasets and code is available at this repository: https://github.com/CAFUC-JJJ/FlightKoopman . Experiments on the real-world dataset demonstrate that FlightKoopman outperforms other baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
26秒前
玛卡巴卡发布了新的文献求助10
32秒前
玛卡巴卡完成签到,获得积分10
46秒前
BowieHuang应助科研通管家采纳,获得10
52秒前
1分钟前
隐形曼青应助务实的初蝶采纳,获得10
1分钟前
1分钟前
1分钟前
Zcl发布了新的文献求助10
2分钟前
星辰大海应助悲凉的冬天采纳,获得10
2分钟前
2分钟前
无私雅柏完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
MrRaBB完成签到 ,获得积分10
3分钟前
3分钟前
Zcl发布了新的文献求助10
3分钟前
3分钟前
Owen应助Zcl采纳,获得30
3分钟前
李爱国应助liwen采纳,获得10
3分钟前
CipherSage应助务实的初蝶采纳,获得10
3分钟前
3分钟前
科研通AI6应助秋刀鱼采纳,获得10
4分钟前
liwen发布了新的文献求助10
4分钟前
秋刀鱼给秋刀鱼的求助进行了留言
4分钟前
在水一方应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
liwen发布了新的文献求助100
4分钟前
Hello应助gtgyh采纳,获得10
5分钟前
5分钟前
5分钟前
浮游应助袁青寒采纳,获得10
5分钟前
Zcl发布了新的文献求助30
5分钟前
5分钟前
石愚志发布了新的文献求助10
5分钟前
5分钟前
Jiang 小白完成签到,获得积分10
6分钟前
袁青寒完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554932
求助须知:如何正确求助?哪些是违规求助? 4639538
关于积分的说明 14656291
捐赠科研通 4581453
什么是DOI,文献DOI怎么找? 2512779
邀请新用户注册赠送积分活动 1487518
关于科研通互助平台的介绍 1458482