FlightKoopman: Deep Koopman for Multi-Dimensional Flight Trajectory Prediction

计算机科学 弹道 人工智能 天文 物理
作者
Jing Lu,Jingjun Jiang,Yidan Bai,Wenxiang Dai,Wei Zhang
出处
期刊:International Journal of Computational Intelligence and Applications [World Scientific]
标识
DOI:10.1142/s146902682450038x
摘要

Multi-dimensional Flight Trajectory Prediction (MFTP) in Flight Operations Quality Assessment (FOQA) refers to the estimation of flight status at the future time, accurate prediction future flight positions, flight attitude and aero-engine monitoring parameters are its goals. Due to differences between flight trajectories and other kinds trajectories and difficult access to data and complex domain knowledge, MFTP in FOQA is much more challenging than Flight Trajectory Prediction (FTP) in Air Traffic Control (ATC) and other trajectory prediction. In this work, a deep Koopman neural operator-based multi-dimensional flight trajectory prediction framework, called Deep Koopman Neural Operator-Based Multi-Dimensional Flight Trajectories Prediction (FlightKoopman), is first proposed to address this challenge. This framework is based on data-driven Koopman theory, enables to construct a prediction model using only data without any prior knowledge, and approximate operator pattern to capture flight maneuver for downstream tasks. The framework recovers the complete state space of the flight dynamics system with Hankle embedding and reconstructs its phase space, and combines a fully connected neural network to generate the observation function of the state space and the approximation matrix of the Koopman operator to obtain an overall model for predicting the evolution. The paper also reveals a virgin dataset Civil Aviation Flight University of China (CAFUC) that could be used for MFTP tasks or other flight trajectory tasks. CAFUC Datasets and code is available at this repository: https://github.com/CAFUC-JJJ/FlightKoopman . Experiments on the real-world dataset demonstrate that FlightKoopman outperforms other baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助wmy0607采纳,获得10
1秒前
3秒前
3秒前
obaica完成签到,获得积分10
3秒前
4秒前
jimey发布了新的文献求助10
4秒前
领导范儿应助111采纳,获得10
5秒前
深情安青应助sw123采纳,获得10
6秒前
xiaomeng完成签到 ,获得积分10
6秒前
斯文败类应助xiaozeng采纳,获得10
6秒前
7秒前
8秒前
8秒前
sweet发布了新的文献求助30
9秒前
Hannah发布了新的文献求助30
9秒前
淳恨战士发布了新的文献求助10
9秒前
鲤鱼井完成签到,获得积分10
9秒前
10秒前
活力千雁完成签到,获得积分10
10秒前
10秒前
冷傲的丹雪完成签到 ,获得积分10
10秒前
我要资料啊完成签到,获得积分10
10秒前
星辰大海应助111采纳,获得10
10秒前
小蘑菇应助地瓜采纳,获得10
11秒前
豪士赋发布了新的文献求助10
12秒前
CodeCraft应助01采纳,获得10
12秒前
愉快的听枫完成签到,获得积分10
12秒前
13秒前
风止发布了新的文献求助10
14秒前
fang发布了新的文献求助10
14秒前
cc发布了新的文献求助10
15秒前
15秒前
溪字关注了科研通微信公众号
15秒前
Lucas应助我要资料啊采纳,获得10
16秒前
pupu发布了新的文献求助10
16秒前
潇洒元枫完成签到,获得积分20
16秒前
qingyun完成签到 ,获得积分10
17秒前
谦让的含海完成签到,获得积分10
18秒前
酷波er应助肥波采纳,获得10
18秒前
dongdong发布了新的文献求助10
18秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384609
求助须知:如何正确求助?哪些是违规求助? 4507395
关于积分的说明 14027925
捐赠科研通 4417077
什么是DOI,文献DOI怎么找? 2426260
邀请新用户注册赠送积分活动 1419055
关于科研通互助平台的介绍 1397383