FlightKoopman: Deep Koopman for Multi-Dimensional Flight Trajectory Prediction

计算机科学 弹道 人工智能 天文 物理
作者
Jing Lu,Jingjun Jiang,Yidan Bai,Wenxiang Dai,Wei Zhang
出处
期刊:International Journal of Computational Intelligence and Applications [Imperial College Press]
标识
DOI:10.1142/s146902682450038x
摘要

Multi-dimensional Flight Trajectory Prediction (MFTP) in Flight Operations Quality Assessment (FOQA) refers to the estimation of flight status at the future time, accurate prediction future flight positions, flight attitude and aero-engine monitoring parameters are its goals. Due to differences between flight trajectories and other kinds trajectories and difficult access to data and complex domain knowledge, MFTP in FOQA is much more challenging than Flight Trajectory Prediction (FTP) in Air Traffic Control (ATC) and other trajectory prediction. In this work, a deep Koopman neural operator-based multi-dimensional flight trajectory prediction framework, called Deep Koopman Neural Operator-Based Multi-Dimensional Flight Trajectories Prediction (FlightKoopman), is first proposed to address this challenge. This framework is based on data-driven Koopman theory, enables to construct a prediction model using only data without any prior knowledge, and approximate operator pattern to capture flight maneuver for downstream tasks. The framework recovers the complete state space of the flight dynamics system with Hankle embedding and reconstructs its phase space, and combines a fully connected neural network to generate the observation function of the state space and the approximation matrix of the Koopman operator to obtain an overall model for predicting the evolution. The paper also reveals a virgin dataset Civil Aviation Flight University of China (CAFUC) that could be used for MFTP tasks or other flight trajectory tasks. CAFUC Datasets and code is available at this repository: https://github.com/CAFUC-JJJ/FlightKoopman . Experiments on the real-world dataset demonstrate that FlightKoopman outperforms other baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东西南北完成签到,获得积分10
1秒前
木木三发布了新的文献求助10
1秒前
沉默完成签到 ,获得积分10
3秒前
3秒前
蛋仔发布了新的文献求助10
10秒前
11秒前
12秒前
小毛毛想睡觉完成签到 ,获得积分10
12秒前
SOS完成签到,获得积分20
13秒前
lonely完成签到,获得积分10
13秒前
annafan完成签到,获得积分10
13秒前
金蛋蛋完成签到 ,获得积分10
13秒前
友好的流沙完成签到 ,获得积分10
14秒前
wipmzxu发布了新的文献求助10
14秒前
斯文败类应助大方荟采纳,获得10
14秒前
无情的冰香完成签到 ,获得积分10
15秒前
东陈西就完成签到,获得积分10
16秒前
烟花应助木木三采纳,获得30
16秒前
凉薄少年应助lonely采纳,获得20
17秒前
平淡的天宇应助SOS采纳,获得10
18秒前
CCL完成签到,获得积分10
18秒前
TG303完成签到,获得积分10
22秒前
iNk应助HM采纳,获得10
22秒前
myj完成签到 ,获得积分10
22秒前
蛋仔完成签到,获得积分10
22秒前
23秒前
虚幻的夜天完成签到 ,获得积分10
23秒前
Michael完成签到,获得积分10
24秒前
有魅力沛岚发布了新的文献求助100
24秒前
speedness完成签到,获得积分10
25秒前
丁丁完成签到 ,获得积分10
25秒前
会飞的鱼发布了新的文献求助10
26秒前
hyh发布了新的文献求助10
27秒前
28秒前
wipmzxu完成签到,获得积分10
29秒前
要文献啊完成签到 ,获得积分10
33秒前
大方荟发布了新的文献求助10
34秒前
Graham完成签到,获得积分10
34秒前
35秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511078
关于积分的说明 11156200
捐赠科研通 3245691
什么是DOI,文献DOI怎么找? 1793100
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268