Research on Metallic Spheres Radius Classification Method Using Machine Learning With Eddy Current Testing

涡流检测 球体 涡流 半径 计算机科学 人工智能 机器学习 模式识别(心理学) 材料科学 工程类 航空航天工程 电气工程 计算机安全
作者
Huilin Zhang,Wenkai Li,Qian Zhao,Zihan Xia,Yuxin Shi,Wuliang Yin
出处
期刊:International Journal of Numerical Modelling-electronic Networks Devices and Fields [Wiley]
卷期号:37 (6)
标识
DOI:10.1002/jnm.3317
摘要

ABSTRACT Metallic spheres play a crucial role in industry and their accurate measurement is essential to ensure the safety of industrial production. Eddy current testing (ECT), which is non‐contact and non‐invasive, provides an efficient and precise approach for the parameter evaluation of metallic spheres. In this paper, we utilize machine learning (ML) methods to invert inductive signals in order to address the inverse problem of ECT, with the aim of reconstructing the radius of a metallic sphere. Datasets containing the radius information of the metallic sphere were constructed based on the simplified analytical solution. The datasets were divided into two parts based on the real part (RP) and imaginary part (IP) features, and the connection between the two features and the radius of the metallic sphere were compared by five classification models. While achieving accurate classification of aluminum and stainless steel spheres with different radius, the models are evaluated to ensure the reliability and validity of the models. The results show that the use of IP data as a classification feature has better accuracy as compared to RP. The K nearest neighbor (KNN) radius classifier has the highest accuracy of 95.5% in aluminum spheres and the random forest (RF) radius classifier has the highest accuracy of 95.9% in stainless steel spheres. In addition, all five classifiers are able to overcome the effect of lift‐off on the classification results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ch发布了新的文献求助80
1秒前
11点一定睡觉完成签到,获得积分10
2秒前
脑洞疼应助爱你不商量采纳,获得10
5秒前
5秒前
科研通AI5应助朴素赛凤采纳,获得30
7秒前
11秒前
qiany发布了新的文献求助10
12秒前
日月完成签到,获得积分10
13秒前
swallow完成签到,获得积分10
16秒前
粗暴的大门完成签到 ,获得积分10
16秒前
小葛完成签到,获得积分10
17秒前
ayayaya完成签到 ,获得积分10
17秒前
子不语完成签到,获得积分0
17秒前
狮子座发布了新的文献求助10
17秒前
风趣的小甜瓜完成签到,获得积分10
18秒前
18秒前
阔达以山应助哈哈采纳,获得10
19秒前
大个应助严笑容采纳,获得10
20秒前
20秒前
秋问萍完成签到 ,获得积分10
20秒前
老胡给我鼠完成签到,获得积分10
20秒前
科研通AI5应助Xu采纳,获得10
21秒前
情怀应助Drake采纳,获得10
21秒前
22秒前
23秒前
qiany完成签到,获得积分20
24秒前
24秒前
JamesPei应助狮子座采纳,获得10
25秒前
111驳回了小蘑菇应助
25秒前
25秒前
共享精神应助科研通管家采纳,获得10
26秒前
山花浪漫应助科研通管家采纳,获得30
26秒前
脑洞疼应助科研通管家采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
劲秉应助科研通管家采纳,获得30
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
天天快乐应助沐沐羚采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
顾矜应助科研通管家采纳,获得10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794