Performance Prediction of High‐Entropy Perovskites La0.8Sr0.2MnxCoyFezO3 with Automated High‐Throughput Characterization of Combinatorial Libraries and Machine Learning

材料科学 钙钛矿(结构) 拉曼光谱 氧化物 电化学 氧气 分析化学(期刊) 电极 物理化学 结晶学 物理 光学 化学 色谱法 冶金 量子力学
作者
Carlota Bozal‐Ginesta,Juan de Dios Sirvent,Giulio Cordaro,Sarah Fearn,Sergio Pablo‐García,Francesco Chiabrera,Changhyeok Choi,Lisa Laa,Marc Núñez,Andrea Cavallaro,Fjorelo Buzi,Ainara Aguadero,Guilhem Dezanneau,John A. Kilner,Álex Morata,Federico Baiutti,Alán Aspuru‐Guzik,Albert Tarancón
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202407372
摘要

Abstract Perovskite oxides form a large family of materials with applications across various fields, owing to their structural and chemical flexibility. Efficient exploration of this extensive compositional space is now achievable through automated high‐throughput experimentation combined with machine learning. In this study, we investigate the composition–structure–performance relationships of high‐entropy La 0.8 Sr 0.2 Mn x Co y Fe z O 3±𝞭 perovskite oxides (0 < x, y, z <1; x+y+z≈1) for application as oxygen electrodes in Solid Oxide Cells. Following the deposition of a continuous compositional map using thin‐film combinatorial pulsed laser deposition, compositional, structural, and performance properties are characterized using six different techniques with mapping capabilities. Random forests effectively model electrochemical performance, consistently identifying Fe‐rich oxides as optimal compounds with the lowest area‐specific resistance values for oxygen electrodes at 700 °C. Additionally, the models identify a statistical correlation between oxygen sublattice distortion—derived from spectral analysis of Raman‐active modes—and enhanced performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花公子完成签到,获得积分10
1秒前
糖糖上岸一定行完成签到,获得积分20
1秒前
外向语蝶完成签到,获得积分10
3秒前
淡淡的忧伤完成签到,获得积分10
6秒前
思源应助hq采纳,获得10
7秒前
LEMONS应助hq采纳,获得10
7秒前
天天快乐应助hq采纳,获得10
7秒前
鲸鱼打滚完成签到,获得积分10
8秒前
活力山蝶应助Ting采纳,获得20
8秒前
conlensce发布了新的文献求助30
8秒前
8R60d8应助果实采纳,获得10
10秒前
甜美无剑应助lswhyr采纳,获得20
10秒前
12秒前
上官若男应助液氧采纳,获得10
13秒前
雪蛤发布了新的文献求助10
15秒前
丰富的夜南关注了科研通微信公众号
15秒前
夸父完成签到,获得积分10
16秒前
糖糖上岸一定行关注了科研通微信公众号
17秒前
量子星尘发布了新的文献求助10
20秒前
思源应助雪蛤采纳,获得10
24秒前
fancynancy应助lswhyr采纳,获得20
25秒前
27秒前
HM发布了新的文献求助10
27秒前
顾矜应助科研通管家采纳,获得10
30秒前
Akim应助科研通管家采纳,获得10
30秒前
Dada应助科研通管家采纳,获得30
30秒前
yar应助科研通管家采纳,获得10
30秒前
高挑的小虾米完成签到,获得积分10
30秒前
hi应助科研通管家采纳,获得10
30秒前
SciGPT应助科研通管家采纳,获得10
30秒前
30秒前
ED应助科研通管家采纳,获得10
30秒前
bkagyin应助科研通管家采纳,获得10
30秒前
ark861023发布了新的文献求助10
31秒前
felix发布了新的文献求助10
32秒前
旺仔发布了新的文献求助20
33秒前
冯珂完成签到 ,获得积分10
35秒前
香蕉觅云应助难过的笑天采纳,获得10
35秒前
36秒前
conlensce完成签到,获得积分10
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150