Infectious Disease Modeling

传染病(医学专业) 疾病 病毒学 重症监护医学 医学 计算生物学 计算机科学 生物 内科学
作者
Jing Huang,Jeffrey S. Morris
出处
期刊:Annual review of statistics and its application [Annual Reviews]
标识
DOI:10.1146/annurev-statistics-112723-034351
摘要

Infectious diseases pose a persistent challenge to public health worldwide. Recent global health crises, such as the COVID-19 pandemic and Ebola outbreaks, have underscored the vital role of infectious disease modeling in guiding public health policy and response. Infectious disease modeling is a critical tool for society, informing risk mitigation measures, prompting timely interventions, and aiding preparedness for healthcare delivery systems. This article synthesizes the current landscape of infectious disease modeling, emphasizing the integration of statistical methods in understanding and predicting the spread of infectious diseases. We begin by examining the historical context and the foundational models that have shaped the field, such as the SIR (susceptible, infectious, recovered) and SEIR (susceptible, exposed, infectious, recovered) models. Subsequently, we delve into the methodological innovations that have arisen, including stochastic modeling, network-based approaches, and the use of big data analytics. We also explore the integration of machine learning techniques in enhancing model accuracy and responsiveness. The review identifies the challenges of parameter estimation, model validation, and the incorporation of real-time data streams. Moreover, we discuss the ethical implications of modeling, such as privacy concerns and the communication of risk. The article concludes by discussing future directions for research, highlighting the need for data integration and interdisciplinary collaboration for advancing infectious disease modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
柚子发布了新的文献求助10
刚刚
1秒前
4秒前
6秒前
冷静烨霖完成签到,获得积分10
8秒前
8秒前
冷静烨霖发布了新的文献求助10
12秒前
诚心的鹏飞关注了科研通微信公众号
12秒前
chenchenchen发布了新的文献求助10
13秒前
Tayco完成签到 ,获得积分10
16秒前
隐形曼青应助zzz采纳,获得10
18秒前
Hu完成签到,获得积分10
18秒前
小西发布了新的文献求助30
19秒前
幸福大白发布了新的文献求助100
21秒前
Jonas完成签到,获得积分0
22秒前
科研痛发布了新的文献求助10
23秒前
chenchenchen发布了新的文献求助10
24秒前
27秒前
淡淡十三发布了新的文献求助10
33秒前
科研痛完成签到,获得积分10
34秒前
35秒前
36秒前
小二郎应助yyang采纳,获得10
38秒前
研友_7ZeNx8发布了新的文献求助50
40秒前
chenchenchen发布了新的文献求助10
40秒前
赘婿应助diaiyi采纳,获得10
42秒前
45秒前
eternity136发布了新的文献求助10
45秒前
46秒前
嘤嘤怪完成签到 ,获得积分10
46秒前
chenchenchen发布了新的文献求助10
50秒前
能干的茗发布了新的文献求助10
50秒前
52秒前
Jimmy发布了新的文献求助30
53秒前
情怀应助写得出发的中采纳,获得10
53秒前
puilinlee发布了新的文献求助10
55秒前
diaiyi发布了新的文献求助10
57秒前
桐桐应助科研通管家采纳,获得10
57秒前
Akim应助科研通管家采纳,获得10
57秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314052
求助须知:如何正确求助?哪些是违规求助? 2946471
关于积分的说明 8530176
捐赠科研通 2622111
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665205
邀请新用户注册赠送积分活动 650804