Point-of-interest recommendation based on the spatial-temporal graph

计算机科学 可解释性 图形 数据挖掘 个性化 兴趣点 情报检索 机器学习 人工智能 理论计算机科学 万维网
作者
Mengyue Li,Fei Li,Zhanquan Wang
出处
期刊:International Journal of Web Information Systems [Emerald (MCB UP)]
卷期号:20 (6): 585-602
标识
DOI:10.1108/ijwis-01-2024-0016
摘要

Purpose Point-of-interest (POI) recommendation techniques play a crucial role in mitigating information overload and delivering tailored services. To address limitations in conventional POI recommendation systems, constrained by sparse user-POI interactions and incomplete consideration of temporal dynamics, POI recommendation based on the spatial-temporal graph (STG-POI) is proposed. Design/methodology/approach Spatial-temporal sequence graphs from geographical locations and user interaction history data are constructed, which are used to mine spatial-temporal sequence information. Using the data filtered by the band-pass filter, graph neural networks with distance-awareness and sequence-awareness are applied to capture high-order spatial-temporal connections within diverse graph topologies. The model leverages contrastive learning for self-supervised disentanglement of graph representations, providing self-supervised signals for sequential and geographical intent perception, thereby achieving more precise POI personalization. Findings Compared to the baseline model GSTN, experiments on the Foursquare and Gowalla data sets reveal that STG-POI improves testing AUC by 2.0%, 2.1%, 2.0% and decreases logloss by 1.9%, 3.3%, 0.3%, respectively. These results indicate the model’s effectiveness in capturing spatial-temporal information, surpassing mainstream POI recommendation baseline models. Originality/value This approach constructs a dual graph from user interaction data, harnessing sequential and geographical information as self-supervised signals. It yields decoupled representations of these influences, offering a comprehensive insight into user behaviors and preferences within location-based social networks, thus enhancing recommendation accuracy and interpretability. This approach addresses the challenge in graph convolutional network where only rough and smooth features are conducive to recommendation by using band-pass filters to significantly reduce computational complexity, thereby enhancing recommendation speed by filtering out noise data that does not contribute to recommendation performance. Experimental results indicate that this model surpasses current mainstream approaches in POI recommendation tasks, effectively integrating both geographical and temporal features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingwill完成签到 ,获得积分0
刚刚
Alan完成签到 ,获得积分10
5秒前
拓跋半雪完成签到,获得积分10
6秒前
赧赧完成签到 ,获得积分10
8秒前
小青完成签到 ,获得积分10
10秒前
Johnlian完成签到 ,获得积分10
17秒前
笨笨青筠完成签到 ,获得积分10
18秒前
浅暖完成签到 ,获得积分10
20秒前
afar完成签到 ,获得积分10
21秒前
SCIER完成签到,获得积分10
22秒前
清秀笑晴完成签到 ,获得积分10
24秒前
25秒前
26秒前
35秒前
听闻韬声依旧完成签到 ,获得积分10
35秒前
优秀发带完成签到 ,获得积分10
35秒前
小喵完成签到 ,获得积分10
36秒前
40秒前
GGbong完成签到 ,获得积分10
41秒前
阿达完成签到 ,获得积分10
43秒前
寒冷丹雪完成签到,获得积分10
43秒前
hu完成签到 ,获得积分10
44秒前
香芋应助albertxin采纳,获得10
49秒前
59秒前
噜噜晓完成签到 ,获得积分10
1分钟前
Tuesday完成签到 ,获得积分10
1分钟前
was_3完成签到,获得积分10
1分钟前
小巧谷波完成签到 ,获得积分10
1分钟前
albertxin完成签到,获得积分10
1分钟前
1分钟前
1分钟前
游01完成签到 ,获得积分10
1分钟前
nulinuli完成签到 ,获得积分10
1分钟前
March完成签到,获得积分10
1分钟前
davyean完成签到,获得积分10
1分钟前
杨明明完成签到,获得积分20
1分钟前
毛毛弟发布了新的文献求助10
1分钟前
1分钟前
1分钟前
tt完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445148
求助须知:如何正确求助?哪些是违规求助? 3041202
关于积分的说明 8984111
捐赠科研通 2729784
什么是DOI,文献DOI怎么找? 1497204
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689714