亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Atomic‐Scale Insights Into the Thermal Stability of High‐Entropy Nanoalloys

材料科学 纳米材料 双金属片 纳米颗粒 原子单位 五元 热稳定性 纳米技术 化学物理 扫描透射电子显微镜 合金 纳米尺度 化学稳定性 透射电子显微镜 热力学 化学工程 金属 化学 冶金 物理 工程类 量子力学
作者
Syrine Krouna,Anissa Acheche,Guillaume Wang,Nathaly Ortiz Peña,Riccardo Gatti,Christian Ricolleau,Hakim Amara,Jaysen Nelayah,Damien Alloyeau
出处
期刊:Advanced Materials [Wiley]
卷期号:37 (4): e2414510-e2414510 被引量:12
标识
DOI:10.1002/adma.202414510
摘要

Abstract High entropy alloy nanoparticles bring hope to developing more efficient nanomaterials for high‐temperature applications. Nevertheless, the enhanced thermal stability of nearly equiatomic nanoalloys containing at least 5 metals is nothing more than theoretical speculation about the impact of thermodynamic contributions on their structural properties and remains to be proven. Here, in situ aberration‐corrected scanning transmission electron microscopy (STEM) and molecular dynamics simulations are combined to investigate at the atomic scale the thermal behavior of AuCoCuNiPt nanoparticles (NPs) from 298 to 973 K. Both in situ STEM heating and atomistic simulations reveal strong structural and chemical evolutions in the NPs with the formation and melting of an AuCu layer at the surface of NPs at high temperature. This phase separation that appears progressively with temperature is driven by pronounced atomic diffusion that is surprisingly more active in these quinary nanoalloys than in monometallic and bimetallic subsystems. Besides ruling out the existence of sluggish diffusion in AuCoCuNiPt nanoalloys and lowering their temperature range of application, the study allows distinguishing kinetic and thermodynamic effects on their structural properties, which is an essential prerequisite to better control the synthesis of complex nanomaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhnn完成签到,获得积分10
1秒前
3秒前
nobody12004发布了新的文献求助30
3秒前
Jiong完成签到,获得积分10
7秒前
淡定语发布了新的文献求助10
9秒前
13秒前
俭朴蜜蜂完成签到 ,获得积分10
14秒前
26秒前
32秒前
我是老大应助Amber采纳,获得10
33秒前
Anlocia发布了新的文献求助10
35秒前
大模型应助Amber采纳,获得10
39秒前
星辰大海应助Amber采纳,获得10
43秒前
50秒前
华仔应助Amber采纳,获得10
51秒前
科研通AI6应助123采纳,获得10
52秒前
54秒前
科研通AI6应助烟消云散采纳,获得10
54秒前
58秒前
世良发布了新的文献求助10
59秒前
顾矜应助世良采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得30
1分钟前
Criminology34应助科研通管家采纳,获得30
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
九月发布了新的文献求助10
1分钟前
1分钟前
1分钟前
bellapp完成签到 ,获得积分10
1分钟前
Anlocia发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
世良发布了新的文献求助10
1分钟前
萝卜特乐完成签到,获得积分10
1分钟前
Laura完成签到,获得积分10
1分钟前
xiaozhou完成签到,获得积分10
1分钟前
hbWang完成签到,获得积分10
1分钟前
1分钟前
CodeCraft应助hbWang采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650722
求助须知:如何正确求助?哪些是违规求助? 4781542
关于积分的说明 15052547
捐赠科研通 4809550
什么是DOI,文献DOI怎么找? 2572377
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487367