Poisson regression is the best method to analyze cumulative adverse childhood experiences.

泊松回归 统计 泊松分布 计量经济学 数学 环境卫生 医学 人口
作者
Scott A. Stage,Kathleen G Kilmartin
出处
期刊:School psychology [American Psychological Association]
标识
DOI:10.1037/spq0000686
摘要

A cumulative count of adverse childhood experiences (ACEs) is associated with poor physical and mental health in adults and more recently associated with poor school performance and behavioral problems in children, although typically analyzed with binary logistic and linear regression models that may inaccurately bias the results. This study compared the results of a Poisson regression model with three binary logistic regression models of ACEs (i.e., 2-ACEs, 3-ACEs, and ≥ 4-ACEs) as well as two multiple linear regression models using ACEs as independent variables to predict children's internalizing and externalizing problem behaviors. We used 4,690 children's data from the Fragile Families and Child Wellbeing Study: a stratified, multistage sample of children born in large U.S. cities between 1998 and 2000, where births to unmarried mothers were oversampled. The children were 47.6% Black, 27.3% Latinx, and 21.1% White, and 4% were reported as other. Results showed that the Poisson regression model best fit the data compared to the logistic regression models based on comparisons of scatterplots of standardized deviance residuals. Results compared to the literature showed the Poisson and ≥ 4-ACEs model were comparable; however, the ≥4-ACEs model overpredicted negative outcomes for four or more ACEs and underpredicted negative outcomes for three or less ACEs. In addition, multiple linear regression results showed enhanced ACEs effects as suppressor variables. Poisson regression is considered the best method to analyze cumulative ACEs as the other methods yield biased results. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助结实涑采纳,获得10
刚刚
FashionBoy应助李大椰采纳,获得10
刚刚
NY完成签到,获得积分10
刚刚
通~发布了新的文献求助10
1秒前
kingwill应助骆子军采纳,获得20
1秒前
傲娇的刺猬完成签到,获得积分20
2秒前
南北发布了新的文献求助10
2秒前
prosperp应助yang采纳,获得20
2秒前
华仔应助跳跃花生采纳,获得10
2秒前
杨然发布了新的文献求助10
3秒前
wei发布了新的文献求助10
3秒前
舒心胜完成签到 ,获得积分10
3秒前
悦耳诗筠完成签到 ,获得积分10
3秒前
传奇3应助风趣秋白采纳,获得10
4秒前
5秒前
yu完成签到,获得积分10
5秒前
haoyooo完成签到,获得积分10
5秒前
5秒前
yulijuan完成签到,获得积分10
5秒前
科研通AI5应助寒冷采梦采纳,获得10
6秒前
7秒前
南北完成签到,获得积分10
8秒前
8秒前
adazbd完成签到,获得积分10
8秒前
今后应助落寞丹烟采纳,获得10
8秒前
Ava应助陈咬金采纳,获得10
9秒前
9秒前
请叫我风吹麦浪应助通~采纳,获得10
9秒前
9秒前
小王完成签到 ,获得积分10
9秒前
prosperp应助yang采纳,获得20
10秒前
li发布了新的文献求助10
11秒前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
11秒前
11秒前
xtt完成签到,获得积分10
12秒前
13秒前
桐桐应助EthanYeung采纳,获得10
13秒前
拯救发布了新的文献求助10
13秒前
李大椰发布了新的文献求助10
13秒前
zhlh发布了新的文献求助10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488153
求助须知:如何正确求助?哪些是违规求助? 3075945
关于积分的说明 9142731
捐赠科研通 2768153
什么是DOI,文献DOI怎么找? 1519077
邀请新用户注册赠送积分活动 703495
科研通“疑难数据库(出版商)”最低求助积分说明 701922