已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fast prediction of coupled oil and environment temperature fields during shutdown of buried waxy crude oil pipelines using neural networks

管道运输 关闭 物理 石油工程 人工神经网络 原油 管道(软件) 石油泄漏 人工智能 环境科学 机械工程 环境工程 核物理学 工程类 计算机科学
作者
Qifu Li,Chuanbo Zhou,Feng Yan,Jingyan Xu,Mingyang Ji,Junhua Gong,Yujie Chen,Yun‐Peng Zhao,Dongxu Han,Peng Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1)
标识
DOI:10.1063/5.0248724
摘要

During the shutdown of buried pipelines carrying hot waxy-rich crude oil, the temperature is likely to drop below the pour point due to heat loss to the surrounding soil environment. This drop can lead to gelation incidents, resulting in significant economic losses. Therefore, in this study, fast prediction models for coupled oil and environment temperature fields during buried pipeline shutdowns are presented, utilizing the Fourier Neural Operator (FNO) network and U-shaped network (UNet). Transient oil and environment temperature fields at the pipeline cross sections are calculated by inputting the shutdown time, the coordinates of the environment temperature field at the pipeline cross section, and boundary conditions. The numerical results are employed to train both the FNO and UNet models. Accurate and fast predictions of oil and environment temperature fields are achieved within 0.5 s for both models, with the FNO model showing slightly better performance in terms of prediction accuracy and efficiency. A root mean square error of 0.015 is maintained for environment temperature predictions, and oil temperature predictions maintain relative errors below 5.0 × 10−4. In four test datasets, the relative prediction errors for oil temperature are kept on the order of 10−3, indicating strong generalization capabilities. Regarding computational efficiency, an acceleration ratio of 1563–2250 is achieved by the UNet model compared to traditional numerical methods, while the FNO model improves this ratio to 2016–2806. These findings offer essential guidelines for the safe shutdown and restart operations of buried wax-rich crude oil pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小沈小沈完成签到,获得积分10
1秒前
Limerencia完成签到,获得积分10
4秒前
4秒前
6秒前
乐乐应助FireNow采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
鲸落星海应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
Lg关注了科研通微信公众号
7秒前
万能图书馆应助hajy采纳,获得10
7秒前
田様应助ly采纳,获得10
8秒前
10秒前
shl完成签到,获得积分10
11秒前
Nefelibata完成签到,获得积分10
14秒前
shl发布了新的文献求助10
16秒前
九日橙完成签到 ,获得积分10
18秒前
19秒前
23秒前
Lg发布了新的文献求助10
25秒前
25秒前
杨无敌完成签到 ,获得积分10
28秒前
科研通AI5应助shl采纳,获得10
28秒前
beplayer1完成签到 ,获得积分10
28秒前
爆米花应助fengfeng采纳,获得10
28秒前
FireNow完成签到,获得积分10
29秒前
小沈完成签到,获得积分10
30秒前
FireNow发布了新的文献求助10
31秒前
33秒前
LJ发布了新的文献求助10
36秒前
牧心24发布了新的文献求助20
37秒前
Tiger完成签到,获得积分10
39秒前
科研通AI2S应助swordlee采纳,获得10
40秒前
腼腆的乐珍完成签到 ,获得积分20
40秒前
40秒前
似水流年完成签到 ,获得积分10
42秒前
充电宝应助LJ采纳,获得10
42秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555581
求助须知:如何正确求助?哪些是违规求助? 3131303
关于积分的说明 9390512
捐赠科研通 2830894
什么是DOI,文献DOI怎么找? 1556204
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715803