Neural Representation-based Wiener Process with Meta-learning for Battery RUL Prediction Under Time-varying Degradation Rate

降级(电信) 可靠性(半导体) 计算机科学 电池(电) 维纳过程 代表(政治) 人工神经网络 过程(计算) 可靠性工程 锂离子电池 人工智能 机器学习 工程类 功率(物理) 数学 电信 政治 政治学 法学 操作系统 数学分析 物理 量子力学
作者
Zhen Chen,Zirong Wang,Wei Wu,Tangbin Xia,Ershun Pan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tim.2025.3527527
摘要

The burgeoning development in industrial technology and the rapid evolution in the realm of new energy have precipitated an increasing need for dependable reliability assessment of lithium-ion batteries. However, the complexity of time-varying degradation rates poses a significant challenge in accurately predicting the remaining useful life for lithium-ion batteries. Additionally, the acquisition of high-quality lithium-ion battery degradation data entails substantial time and financial investments. Consequently, a novel degradation model that employs the Neural representation-based Wiener process is developed. The integration of stochastic process with neural representation equips the proposed model with an enhanced capability for nonlinear fitting. Besides, the incorporation of meta-learning for model training facilitates the prediction capability effectively in application scenarios under time-varying degradation rates and limited available data. The efficacy of the proposed model is validated through comprehensive case studies on battery data, where the model is well trained just with first 10% of it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱孝培完成签到,获得积分10
刚刚
247793325发布了新的文献求助20
刚刚
加油呀完成签到,获得积分10
刚刚
聪明可爱小绘理完成签到,获得积分10
刚刚
36456657应助啱啱采纳,获得10
刚刚
桐桐应助韦威风采纳,获得10
1秒前
1秒前
1秒前
zc98完成签到,获得积分10
2秒前
ygr应助Hao采纳,获得10
2秒前
NEMO发布了新的文献求助10
3秒前
李爱国应助神勇的戒指采纳,获得10
3秒前
4秒前
思源应助kekao采纳,获得10
4秒前
4秒前
tengli发布了新的文献求助10
4秒前
SHIKAMARU完成签到,获得积分10
6秒前
杨尚朋完成签到,获得积分10
6秒前
6秒前
6秒前
Akim应助esdeath采纳,获得10
7秒前
科研通AI5应助Inahurry采纳,获得10
7秒前
小赵完成签到,获得积分10
8秒前
zhui发布了新的文献求助10
8秒前
8秒前
9秒前
sakurai应助Maxw采纳,获得10
9秒前
xiangxl发布了新的文献求助10
9秒前
9秒前
10秒前
UGO发布了新的文献求助10
10秒前
lh发布了新的文献求助10
10秒前
乐乐应助个性尔槐采纳,获得10
10秒前
希望天下0贩的0应助瑶625采纳,获得10
11秒前
tengli完成签到,获得积分20
11秒前
劲秉应助坚定迎天采纳,获得20
11秒前
桐桐应助杨枝甘露樱桃采纳,获得10
12秒前
搜集达人应助zhuzhu采纳,获得20
12秒前
LiShin发布了新的文献求助10
13秒前
末岛发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794