Diagnosis of Acute Versus Chronic Thoracolumbar Vertebral Compression Fractures Using CT Radiomics Based on Machine Learning: a Preliminary Study

医学 接收机工作特性 逻辑回归 无线电技术 腰椎 放射科 回顾性队列研究 核医学 外科 内科学
作者
X. Zhuang,Jinan Wang,Jianghe Kang,Ziying Lin
标识
DOI:10.1007/s10278-024-01359-5
摘要

The purpose of this study is to evaluate the performance of radiomic models in acute thoracolumbar vertebral compression fractures (VCFs) and their impact on radiologists. In this monocentre retrospective study, eligible for inclusion were adults who underwent emergent thoracic/lumbar CT between May 2022 and November 2023 in our hospital diagnosed with thoracolumbar VCFs. The lesions were randomly divided at a ratio of 7:3 into a training set and test set. For external validation, consecutive patients who underwent emergent thoracic/lumbar CT between January 2022 and April 2022 were included. MRI and previous imaging were used as reference standard. The vertebral body area was manually segmented. Logistic regression was used to construct a CT radiomic model and a combined model, including Relief-selected radiomic features and clinical information. The radiologists' diagnosis with and without the models was recorded. The performance was assessed using receiver operating characteristic curves (ROC), calibration curves (CC) and decision curve analysis (DCA). Of 235 VCFs in 147 patients (median age, 73 years, 66 male) included, the diagnosis of acute VCFs was confirmed in 126. The area under the ROC of the CT radiomics model and the combined model in the external validation set were 0.883 (95% CI 0.777, 0.998) and 0.875 (95% CI 0.768, 0.982), respectively. CC and DCA showed good clinical application of the models. The less experienced reader achieved a higher accuracy with the help of the models (p = 0.027). The radiomic models showed high accuracy for diagnosing acute VCFs and helped radiologists improve the accuracy of diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歪比八不发布了新的文献求助10
刚刚
行走的柳叶刀完成签到,获得积分10
2秒前
3秒前
科研通AI6应助onecloudhere采纳,获得10
3秒前
6666完成签到,获得积分10
4秒前
xcxElf完成签到,获得积分10
5秒前
科研通AI6应助黑马王子采纳,获得10
6秒前
完美世界应助歪比八不采纳,获得10
6秒前
JOKY完成签到 ,获得积分10
7秒前
科研通AI6应助小雒雒采纳,获得10
7秒前
随心完成签到 ,获得积分10
7秒前
8秒前
JianhuangChen完成签到,获得积分10
8秒前
上官若男应助励志小薛采纳,获得10
8秒前
9秒前
9秒前
DCW发布了新的文献求助10
10秒前
10秒前
10秒前
微风打了烊完成签到 ,获得积分10
11秒前
11秒前
堪曼凝完成签到,获得积分10
11秒前
努力蔸蔸完成签到,获得积分10
11秒前
科研通AI6应助无辜的笑蓝采纳,获得30
11秒前
522发布了新的文献求助10
11秒前
12秒前
饺子完成签到,获得积分10
12秒前
天天快乐应助飒奥采纳,获得10
12秒前
不抛弃不放弃完成签到,获得积分20
12秒前
胖头鱼的猪耳朵完成签到,获得积分20
13秒前
ttttt发布了新的文献求助10
13秒前
顺利蜻蜓发布了新的文献求助10
13秒前
约定看星星啊完成签到,获得积分10
14秒前
dew应助zhhua采纳,获得10
15秒前
我要发sci发布了新的文献求助10
15秒前
16秒前
17秒前
高欣发布了新的文献求助10
17秒前
周芷卉完成签到 ,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244