Successive variational nonstationary mode decomposition for bearing multi-fault diagnosis undertime-varying speed conditions

方位(导航) 控制理论(社会学) 振动 断层(地质) 计算机科学 信号(编程语言) 先验与后验 功能(生物学) 模式(计算机接口) 能量(信号处理) 代表(政治) 算法 数学优化 数学 人工智能 声学 统计 哲学 物理 控制(管理) 认识论 进化生物学 地震学 政治 政治学 法学 生物 程序设计语言 地质学 操作系统
作者
Lingli Cui,Long Yan,Dezun Zhao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241292837
摘要

Rolling bearings are important components in mechanical machinery, and their failure will directly affect the normal operation of the machine. Therefore, the analysis of mechanical machinery vibration signals is crucial for ensuring the normal operation of the machinery. Successive variational mode decomposition (SVMD) is an important technique for decomposing a bearing stationary signal into its characteristic modes with a priori penalty factor. Therefore, it cannot handle nonstationary bearing signals. To tackle the above problems, a novel method, named successive variational nonstationary mode decomposition (SVNMD), is developed in this article. First, a new decomposition framework is proposed by adopting the constructed resampling operator to modify the optimization function of the SVMD, which eliminates the influence of frequency mixing. Second, in order to automatically determine the optimal penalty factor, an iterative selection scheme is developed, which is free from prior knowledge. Third, an instantaneous frequency estimation theory is proposed to obtain the common trend function of the signal. Finally, a time-frequency representation with high-energy concentration is obtained to accurately identify the fault characteristics of rolling bearings. Both the simulation and experimental verification have confirmed the productiveness of the SVNMD in diagnosing multiple faults of bearings under time-varying speed conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fztnh发布了新的文献求助10
刚刚
无名花生完成签到 ,获得积分10
刚刚
2秒前
3秒前
3秒前
杜若完成签到,获得积分10
3秒前
3秒前
木森ab完成签到,获得积分20
5秒前
paul发布了新的文献求助10
6秒前
7秒前
MEME发布了新的文献求助10
10秒前
10秒前
情怀应助LSH970829采纳,获得10
10秒前
CHINA_C13发布了新的文献求助10
13秒前
Mars发布了新的文献求助10
14秒前
哈哈哈完成签到,获得积分10
14秒前
玛卡巴卡应助平常的毛豆采纳,获得100
15秒前
默默的青旋完成签到,获得积分10
16秒前
19秒前
搜集达人应助淡淡采白采纳,获得10
19秒前
高高代珊完成签到 ,获得积分10
20秒前
gmc发布了新的文献求助10
21秒前
21秒前
22秒前
善学以致用应助Mian采纳,获得10
22秒前
学科共进发布了新的文献求助60
23秒前
LWJ完成签到 ,获得积分10
23秒前
23秒前
缓慢的糖豆完成签到,获得积分10
24秒前
阉太狼完成签到,获得积分10
24秒前
25秒前
soory完成签到,获得积分10
26秒前
任性的傲柏完成签到,获得积分10
26秒前
lwk205完成签到,获得积分0
26秒前
27秒前
一一完成签到,获得积分10
27秒前
27秒前
27秒前
高中生完成签到,获得积分10
28秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824