A method for predicting linear and conformational B-cell epitopes in an antigen from its primary sequence

表位 序列(生物学) 抗原 相似性(几何) 计算生物学 人工智能 计算机科学 模式识别(心理学) 免疫学 生物 化学 生物化学 图像(数学)
作者
Nishant Kumar,Sadhana Tripathi,Neelam Sharma,Sumeet Patiyal,Leimarembi Devi Naorem,Gajendra P. S. Raghava
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108083-108083 被引量:10
标识
DOI:10.1016/j.compbiomed.2024.108083
摘要

B-cell is an essential component of the immune system that plays a vital role in providing the immune response against any pathogenic infection by producing antibodies. Existing methods either predict linear or conformational B-cell epitopes in an antigen. In this study, a single method was developed for predicting both types (linear/conformational) of B-cell epitopes. The dataset used in this study contains 3875 B-cell epitopes and 3996 non-B-cell epitopes, where B-cell epitopes consist of both linear and conformational B-cell epitopes. Our primary analysis indicates that certain residues (like Asp, Glu, Lys, and Asn) are more prominent in B-cell epitopes. We developed machine-learning based methods using different types of sequence composition and achieved the highest AUROC of 0.80 using dipeptide composition. In addition, models were developed on selected features, but no further improvement was observed. Our similarity-based method implemented using BLAST shows a high probability of correct prediction with poor sensitivity. Finally, we developed a hybrid model that combines alignment-free (dipeptide based random forest model) and alignment-based (BLAST-based similarity) models. Our hybrid model attained a maximum AUROC of 0.83 with an MCC of 0.49 on the independent dataset. Our hybrid model performs better than existing methods on an independent dataset used in this study. All models were trained and tested on 80 % of the data using a cross-validation technique, and the final model was evaluated on 20 % of the data, called an independent or validation dataset. A webserver and standalone package named "CLBTope" has been developed for predicting, designing, and scanning B-cell epitopes in an antigen sequence available at (https://webs.iiitd.edu.in/raghava/clbtope/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
电饭宝发布了新的文献求助10
1秒前
苏黎世发布了新的文献求助10
2秒前
打打应助从容前行采纳,获得10
2秒前
WTT完成签到,获得积分10
2秒前
asd_1发布了新的文献求助10
3秒前
Orange应助entropy采纳,获得10
3秒前
脑洞疼应助Joie采纳,获得10
3秒前
为了科研发布了新的文献求助10
3秒前
科研包发布了新的文献求助10
3秒前
4秒前
领导范儿应助jeffery111采纳,获得10
4秒前
科研通AI2S应助Dr.Sun采纳,获得10
4秒前
赘婿应助友好寄真采纳,获得10
5秒前
WTT发布了新的文献求助10
5秒前
平淡南露发布了新的文献求助10
5秒前
乐乐应助我在北林养猪采纳,获得30
5秒前
宝小静完成签到,获得积分10
6秒前
你不知道发布了新的文献求助10
6秒前
6秒前
6秒前
九月完成签到 ,获得积分10
6秒前
深情安青应助从笙采纳,获得10
7秒前
7秒前
7秒前
哒哒完成签到,获得积分10
8秒前
8秒前
善学以致用应助清爽水风采纳,获得20
8秒前
9秒前
郑浩完成签到,获得积分10
9秒前
Eacom完成签到 ,获得积分10
9秒前
清脆的连虎完成签到,获得积分10
10秒前
66不想读文献完成签到,获得积分10
10秒前
10秒前
chen发布了新的文献求助10
11秒前
小权拳的权完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助150
11秒前
11秒前
11秒前
lsy完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2025山东省直机关硬笔书法展示活动获奖名单 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4939546
求助须知:如何正确求助?哪些是违规求助? 4205965
关于积分的说明 13072479
捐赠科研通 3984403
什么是DOI,文献DOI怎么找? 2181682
邀请新用户注册赠送积分活动 1197393
关于科研通互助平台的介绍 1109635