A method for predicting linear and conformational B-cell epitopes in an antigen from its primary sequence

表位 序列(生物学) 抗原 相似性(几何) 计算生物学 人工智能 B细胞 计算机科学 模式识别(心理学) 抗体 免疫学 生物 化学 生物化学 图像(数学)
作者
Nishant Kumar,Sadhana Tripathi,Neelam Sharma,Sumeet Patiyal,Leimarembi Devi Naorem,Gajendra P. S. Raghava
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 108083-108083
标识
DOI:10.1016/j.compbiomed.2024.108083
摘要

B-cell is an essential component of the immune system that plays a vital role in providing the immune response against any pathogenic infection by producing antibodies. Existing methods either predict linear or conformational B-cell epitopes in an antigen. In this study, a single method was developed for predicting both types (linear/conformational) of B-cell epitopes. The dataset used in this study contains 3875 B-cell epitopes and 3996 non-B-cell epitopes, where B-cell epitopes consist of both linear and conformational B-cell epitopes. Our primary analysis indicates that certain residues (like Asp, Glu, Lys, and Asn) are more prominent in B-cell epitopes. We developed machine-learning based methods using different types of sequence composition and achieved the highest AUROC of 0.80 using dipeptide composition. In addition, models were developed on selected features, but no further improvement was observed. Our similarity-based method implemented using BLAST shows a high probability of correct prediction with poor sensitivity. Finally, we developed a hybrid model that combines alignment-free (dipeptide based random forest model) and alignment-based (BLAST-based similarity) models. Our hybrid model attained a maximum AUROC of 0.83 with an MCC of 0.49 on the independent dataset. Our hybrid model performs better than existing methods on an independent dataset used in this study. All models were trained and tested on 80 % of the data using a cross-validation technique, and the final model was evaluated on 20 % of the data, called an independent or validation dataset. A webserver and standalone package named "CLBTope" has been developed for predicting, designing, and scanning B-cell epitopes in an antigen sequence available at (https://webs.iiitd.edu.in/raghava/clbtope/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
纷纭完成签到,获得积分10
5秒前
5秒前
JeremyLiu完成签到,获得积分10
5秒前
Leisure_Lee完成签到,获得积分10
6秒前
guajiguaji发布了新的文献求助10
7秒前
跳跳妈妈发布了新的文献求助10
9秒前
nnn发布了新的文献求助30
10秒前
cc完成签到,获得积分10
11秒前
zhou发布了新的文献求助10
13秒前
二斤瓜子完成签到,获得积分10
15秒前
慕白发布了新的文献求助30
15秒前
augur完成签到,获得积分10
17秒前
莉莉发布了新的文献求助10
18秒前
唐军完成签到,获得积分20
19秒前
zhehuai完成签到,获得积分10
20秒前
思源应助guajiguaji采纳,获得10
20秒前
乐乐应助阿耒采纳,获得10
21秒前
无花果应助缓慢千易采纳,获得10
21秒前
咖可乐完成签到,获得积分10
21秒前
22秒前
畅快沁完成签到,获得积分10
22秒前
22秒前
xixia发布了新的文献求助10
23秒前
真的OK完成签到,获得积分10
23秒前
orixero应助zhou采纳,获得10
23秒前
安小野完成签到,获得积分10
23秒前
26秒前
26秒前
27秒前
善学以致用应助崔尔蓉采纳,获得10
28秒前
yang发布了新的文献求助10
28秒前
负责的方盒完成签到,获得积分10
29秒前
30秒前
zhangxu发布了新的文献求助10
30秒前
31秒前
冷傲的xu发布了新的文献求助10
32秒前
唐军发布了新的文献求助10
32秒前
崔尔蓉发布了新的文献求助10
33秒前
顾矜应助zzw18512467916采纳,获得10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3354530
求助须知:如何正确求助?哪些是违规求助? 2978841
关于积分的说明 8687964
捐赠科研通 2660478
什么是DOI,文献DOI怎么找? 1456652
科研通“疑难数据库(出版商)”最低求助积分说明 674435
邀请新用户注册赠送积分活动 665283