A method for predicting linear and conformational B-cell epitopes in an antigen from its primary sequence

表位 序列(生物学) 抗原 相似性(几何) 计算生物学 人工智能 计算机科学 模式识别(心理学) 免疫学 生物 化学 生物化学 图像(数学)
作者
Nishant Kumar,Sadhana Tripathi,Neelam Sharma,Sumeet Patiyal,Leimarembi Devi Naorem,Gajendra P. S. Raghava
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 108083-108083 被引量:10
标识
DOI:10.1016/j.compbiomed.2024.108083
摘要

B-cell is an essential component of the immune system that plays a vital role in providing the immune response against any pathogenic infection by producing antibodies. Existing methods either predict linear or conformational B-cell epitopes in an antigen. In this study, a single method was developed for predicting both types (linear/conformational) of B-cell epitopes. The dataset used in this study contains 3875 B-cell epitopes and 3996 non-B-cell epitopes, where B-cell epitopes consist of both linear and conformational B-cell epitopes. Our primary analysis indicates that certain residues (like Asp, Glu, Lys, and Asn) are more prominent in B-cell epitopes. We developed machine-learning based methods using different types of sequence composition and achieved the highest AUROC of 0.80 using dipeptide composition. In addition, models were developed on selected features, but no further improvement was observed. Our similarity-based method implemented using BLAST shows a high probability of correct prediction with poor sensitivity. Finally, we developed a hybrid model that combines alignment-free (dipeptide based random forest model) and alignment-based (BLAST-based similarity) models. Our hybrid model attained a maximum AUROC of 0.83 with an MCC of 0.49 on the independent dataset. Our hybrid model performs better than existing methods on an independent dataset used in this study. All models were trained and tested on 80 % of the data using a cross-validation technique, and the final model was evaluated on 20 % of the data, called an independent or validation dataset. A webserver and standalone package named "CLBTope" has been developed for predicting, designing, and scanning B-cell epitopes in an antigen sequence available at (https://webs.iiitd.edu.in/raghava/clbtope/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术菜鸟发布了新的文献求助20
3秒前
6秒前
TvT关注了科研通微信公众号
6秒前
我是熊大完成签到 ,获得积分10
6秒前
7秒前
符兴岛完成签到 ,获得积分10
7秒前
7秒前
星辰大海应助zyy采纳,获得10
8秒前
北地风情应助CHBW采纳,获得50
9秒前
HAHA发布了新的文献求助10
9秒前
HAHA发布了新的文献求助10
10秒前
HAHA发布了新的文献求助10
10秒前
LiuJin完成签到,获得积分10
11秒前
HAHA发布了新的文献求助10
11秒前
Sprite666发布了新的文献求助10
12秒前
晴乐令完成签到,获得积分10
12秒前
14秒前
14秒前
学术菜鸟完成签到,获得积分10
16秒前
Motorhead完成签到,获得积分10
17秒前
18秒前
Sprite666完成签到,获得积分10
19秒前
田様应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
Joker完成签到,获得积分0
20秒前
慕青应助科研通管家采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
20秒前
20秒前
科研通AI6应助科研通管家采纳,获得30
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
cinn应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
21秒前
量子星尘发布了新的文献求助10
23秒前
banegor完成签到 ,获得积分10
24秒前
seekingalone完成签到,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419479
求助须知:如何正确求助?哪些是违规求助? 4534726
关于积分的说明 14146477
捐赠科研通 4451326
什么是DOI,文献DOI怎么找? 2441717
邀请新用户注册赠送积分活动 1433274
关于科研通互助平台的介绍 1410587