数学
类型(生物学)
单调函数
规范(哲学)
简并能级
纯数学
继续
订单(交换)
边界(拓扑)
数学分析
功能(生物学)
椭圆算子
法学
物理
进化生物学
生物
量子力学
经济
计算机科学
生态学
程序设计语言
政治学
财务
作者
Hairong Liu,Xiaoping Yang
标识
DOI:10.1016/j.jde.2023.12.002
摘要
In this paper, we prove the strong unique continuation property for the following fourth order degenerate elliptic equationΔX2u=Vu, where ΔX=Δx+|x|2αΔy (0<α≤1), with x∈Rm,y∈Rn, denotes the Baouendi-Grushin type subelliptic operators, and the potential V satisfies the strongly singular growth assumption |V|≤c0ρ4, whereρ=(|x|2(α+1)+(α+1)2|y|2)12(α+1) is the gauge norm. The main argument is to introduce an Almgren's type frequency function for the solutions, and show its monotonicity to obtain a doubling estimate based on setting up some refined Hardy-Rellich type inequalities on the gauge balls with boundary terms.
科研通智能强力驱动
Strongly Powered by AbleSci AI