A polymer-like ultrahigh-strength metal alloy

合金 材料科学 金属 聚合物 冶金 复合材料
作者
Xiaobing Ren,Yang Yang,Zhizhi Xu,Yuanchao Ji,Tianyu Ma,Chang Liu,Liqiang He,Ye Yuan,Qian Yu,Andong Xiao,Wenjia Wang
出处
期刊:Research Square - Research Square 被引量:2
标识
DOI:10.21203/rs.3.rs-3649839/v1
摘要

Abstract Futuristic technologies like morphing aircrafts and superstrong artificial muscles are hinged on metal alloys being as strong as an ultrahigh-strength steel (with a high yield strength σy >1 GPa) yet as flexible as a polymer (with an ultralow elastic modulus E ~10 GPa)1-3. However, achieving such “strong yet flexible” alloys has proven challenging4-9. The difficulty lies in an inevitable trade-off between strength and flexibility5,8,10, which precludes a high-strength alloy from being of polymer-like ultralow modulus. Here we report a Ti-50.8 at.% Ni strain glass alloy showing an unprecedented combination of an ultrahigh yield strength σy ~1.8 GPa with a polymer-like ultralow elastic modulus E ~10.5 GPa, together with a superlarge rubber-like J-shaped elastic strain of ~8%. As a result, it possesses the highest flexibility figure of merit σy/E ~0.17 which far exceeds that of existing structural materials. This alloy was fabricated by a simple 3-step thermomechanical treatment, which leads to not only ultrahigh strength but also ultralow modulus through forming a unique “dual-seed strain glass” (DS-STG) microstructure, being a strain glass matrix embedded with a small amount of R and B19' martensites. In-situ x-ray diffractometry reveals that the DS-STG enables a nucleation-free reversible transition between strain glass and R and B19’ martensites during stress loading/unloading, thereby leading to ultralow modulus and large recoverable strain with narrow hysteresis. Our finding may open a new horizon for designing and mass-producing strong and flexible alloys and such alloys may lead to important applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
凸迩丝儿完成签到 ,获得积分10
刚刚
科研通AI5应助wu采纳,获得30
刚刚
刚刚
爆米花应助艺玲采纳,获得10
1秒前
1秒前
诸葛雪兰发布了新的文献求助10
1秒前
2秒前
CC完成签到,获得积分10
2秒前
wanci应助gaos采纳,获得10
2秒前
顾矜应助四火采纳,获得10
2秒前
人福药业发布了新的文献求助30
2秒前
liuguohua126发布了新的文献求助10
3秒前
分子遗传小菜鸟完成签到,获得积分10
3秒前
洛尚发布了新的文献求助10
3秒前
英俊的铭应助咳咳采纳,获得10
4秒前
科研通AI2S应助嗯呢采纳,获得10
4秒前
姆姆发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
11发布了新的文献求助10
7秒前
大个应助limof采纳,获得10
7秒前
8秒前
竹筏过海应助chen采纳,获得50
9秒前
9秒前
schoolboy发布了新的文献求助10
9秒前
完美世界应助洛尚采纳,获得10
9秒前
苹果萧发布了新的文献求助10
10秒前
钟是一梦发布了新的文献求助10
11秒前
Lucas应助Light采纳,获得10
12秒前
12秒前
12秒前
李健的粉丝团团长应助Ll采纳,获得10
12秒前
12秒前
JQKing完成签到,获得积分10
13秒前
13秒前
zs完成签到 ,获得积分10
13秒前
13秒前
11完成签到,获得积分20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740