ODDformer: odd–even de-stationary and decomposition techniques transformer for aircraft engine remaining useful life prediction

变压器 汽车工程 计算机科学 环境科学 工程类 电气工程 电压
作者
Shuang Yi,Xiaodong Han,Binbin Liang,Guoxin Huang,Wei Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 066010-066010 被引量:2
标识
DOI:10.1088/1361-6501/ad31f5
摘要

Abstract In the aerospace industry, accurately predicting the remaining useful life (RUL) of aircraft engines is critical to reduce maintenance costs and increase safety. Existing RUL prediction algorithms fail to account for global temporal factors, overlook the non-stationary nature of monitored data, and neglect critical trends and seasonal characteristics. These factors directly affect the sensitivity of the forecast model to changes in the system state. In light of this, this study introduces an innovative end-to-end deep learning model, called odd–even de-stationary and decomposition transformer (ODDformer), specifically designed for accurate RUL prediction. By incorporating global time embedding, our model demonstrates improved temporal awareness. We propose an innovative odd–even sequence normalization technique, enhancing data stability. Our method incorporates advanced odd–even de-stationary attention to capture crucial dynamic features, deepening model understanding of data evolution. Simultaneously, our channel-independent series decomposition modules extract reliable trend and seasonal features for each sensor. Finally, the two feature sets are fused to obtain the final prediction results. Experimental results on the N-CMPASS dataset demonstrate a 50.89% reduction in RMSE for ODDformer compared to the baseline and a 59.08% reduction for Score. Ablation experiments have validated the efficacy of these components. Our findings offer promising potential for improving tasks like fault diagnosis and anomaly detection in prognostics and health management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助吧啦吧啦采纳,获得10
1秒前
Upupupiu发布了新的文献求助10
1秒前
阿欣完成签到,获得积分10
2秒前
乌禅发布了新的文献求助10
3秒前
orixero应助西子阳采纳,获得10
4秒前
专注的乐荷完成签到,获得积分10
4秒前
淡然依凝发布了新的文献求助10
4秒前
zz完成签到 ,获得积分10
7秒前
7秒前
8秒前
乌禅完成签到,获得积分10
8秒前
笑的得美完成签到,获得积分10
9秒前
是小曹啊发布了新的文献求助10
10秒前
乐乐应助lan采纳,获得10
10秒前
智海瑞完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
王AA发布了新的文献求助20
13秒前
Ling完成签到,获得积分10
13秒前
花照林发布了新的文献求助10
13秒前
13秒前
solveing发布了新的文献求助10
13秒前
cc完成签到,获得积分20
15秒前
15秒前
15秒前
吧啦吧啦发布了新的文献求助10
16秒前
16秒前
Rondab应助冷酷仙人掌采纳,获得10
17秒前
搜集达人应助lulyt采纳,获得10
18秒前
嘎嘎嘎的猫完成签到 ,获得积分10
18秒前
18秒前
CodeCraft应助linshiba_18采纳,获得10
18秒前
cc发布了新的文献求助20
19秒前
19秒前
19秒前
19秒前
19秒前
20秒前
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061