亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ACP-ESM: A novel framework for classification of anticancer peptides using protein-oriented transformer approach

癌症治疗 变压器 癌细胞 计算机科学 氨基酸 计算生物学 癌症 化学 生物 生物化学 医学 工程类 内科学 电气工程 电压
作者
Zeynep Hilal Kilimci,Mustafa Yalçın
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2401.02124
摘要

Anticancer peptides (ACPs) are a class of molecules that have gained significant attention in the field of cancer research and therapy. ACPs are short chains of amino acids, the building blocks of proteins, and they possess the ability to selectively target and kill cancer cells. One of the key advantages of ACPs is their ability to selectively target cancer cells while sparing healthy cells to a greater extent. This selectivity is often attributed to differences in the surface properties of cancer cells compared to normal cells. That is why ACPs are being investigated as potential candidates for cancer therapy. ACPs may be used alone or in combination with other treatment modalities like chemotherapy and radiation therapy. While ACPs hold promise as a novel approach to cancer treatment, there are challenges to overcome, including optimizing their stability, improving selectivity, and enhancing their delivery to cancer cells, continuous increasing in number of peptide sequences, developing a reliable and precise prediction model. In this work, we propose an efficient transformer-based framework to identify anticancer peptides for by performing accurate a reliable and precise prediction model. For this purpose, four different transformer models, namely ESM, ProtBert, BioBERT, and SciBERT are employed to detect anticancer peptides from amino acid sequences. To demonstrate the contribution of the proposed framework, extensive experiments are carried on widely-used datasets in the literature, two versions of AntiCp2, cACP-DeepGram, ACP-740. Experiment results show the usage of proposed model enhances classification accuracy when compared to the state-of-the-art studies. The proposed framework, ESM, exhibits 96.45 of accuracy for AntiCp2 dataset, 97.66 of accuracy for cACP-DeepGram dataset, and 88.51 of accuracy for ACP-740 dataset, thence determining new state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
jack1511发布了新的文献求助10
7秒前
科研通AI5应助Frank采纳,获得10
9秒前
Leon应助KGYM采纳,获得10
13秒前
Zyd完成签到,获得积分10
15秒前
jack1511完成签到,获得积分10
18秒前
22秒前
我是老大应助科研通管家采纳,获得10
26秒前
华仔应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
Zyd发布了新的文献求助20
28秒前
Frank发布了新的文献求助10
28秒前
HS完成签到,获得积分10
30秒前
lilinuusss完成签到,获得积分10
31秒前
Jasper应助无醇橙汁采纳,获得30
47秒前
静静想静静地静静完成签到 ,获得积分10
49秒前
啊啊啊完成签到 ,获得积分10
51秒前
元骑走之辣完成签到 ,获得积分10
56秒前
56秒前
无醇橙汁完成签到,获得积分10
58秒前
无醇橙汁发布了新的文献求助30
1分钟前
思源应助tg113d采纳,获得10
1分钟前
完美世界应助月月采纳,获得20
1分钟前
漂亮夏兰完成签到 ,获得积分10
1分钟前
科目三应助暴走大菠萝采纳,获得10
1分钟前
1分钟前
Silverexile完成签到,获得积分10
1分钟前
垚祎完成签到 ,获得积分10
1分钟前
碧蓝香芦完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI5应助2:38am采纳,获得10
1分钟前
1分钟前
努力完成签到 ,获得积分10
1分钟前
1分钟前
ypc发布了新的文献求助20
1分钟前
1分钟前
北斗HH完成签到,获得积分10
1分钟前
1分钟前
2:38am发布了新的文献求助10
1分钟前
小太阳发布了新的文献求助10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674271
求助须知:如何正确求助?哪些是违规求助? 3229696
关于积分的说明 9786736
捐赠科研通 2940240
什么是DOI,文献DOI怎么找? 1611741
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736372