蒙脱石
沥青
材料科学
挥发性有机化合物
化学工程
废物管理
有机化学
复合材料
化学
工程类
作者
Guangchen Wang,Xiaolong Yang,Semra Tan,Hongliu Rong,Yongjun Meng
标识
DOI:10.1016/j.conbuildmat.2024.135494
摘要
Volatile organic compound (VOC) emissions are becoming an increasingly significant issue because of the increasing demand for bitumen in road engineering. This study attempted to develop a type of fume-suppressed bitumen with good comprehensive performance. Initially, 1, 2, and 3% organic montmorillonite and 2, 3, and 4% waxy warm-mix agents were utilised to modify bitumen. Subsequently, the fume suppression and physical and construction performances of the modified bitumen were evaluated, and the modified bitumen with the best comprehensive performance was determined. On this basis, constant- and variable-temperature heating modes were designed to verify the fuel suppression performance of the modified bitumen thoroughly. Finally, the modification mechanism of modified bitumen was investigated via atomic force microscopy. The results indicate that the modifier had the greatest impact on the ductility of the modified bitumen in terms of its physical performance. Although waxy warm mixed agents increase VOC emissions, organic montmorillonite can inhibit this effect. The modified bitumen, composed of 2% organic montmorillonite and 2% waxy warm mix agent, has the best comprehensive performance, with a 40.6% emission reduction rate under constant temperature heating mode and 46.4–28% range from 200 ℃ to 120 ℃ under another mode. The waxy warm mix agents and organic montmorillonite-modified bitumen developed into continuous and dispersed phase systems, respectively, leading to variations in the modified bitumen's physical performance and VOC emission capacity. In contrast, the composite-modified bitumen exhibited a two-phase structure with the surface morphology of an 'egg tray'. This unique structure enhances the heating surface area and facilitates heat conduction, improving the bitumen performance during construction.
科研通智能强力驱动
Strongly Powered by AbleSci AI