清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SSER: Semi-Supervised Emotion Recognition Based on Triplet Loss and Pseudo Label

计算机科学 情绪识别 心理学 语音识别 认知心理学 模式识别(心理学) 人工智能
作者
Lili Pan,Weizhi Shao,Siyu Xiong,Qianhui Lei,Shiqi Huang,Eric J. Beckman,Qinghua Hu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:: 111595-111595
标识
DOI:10.1016/j.knosys.2024.111595
摘要

Recently, emotion recognition from facial expressions has achieved unprecedented accuracy with the development of deep learning. Despite this progress, most existing emotion recognition methods are supervised and thus require extensive annotation. This issue is particularly pronounced in continuous domain datasets where annotation costs are very high. Furthermore, discrete domain datasets containing specific poses are too uniform to reflect complex and actual emotions. Existing methods that employ classification loss pay little attention to image similarity, making it difficult to distinguish similar emotions. To improve the learning ability for image similarity and reduce the annotation cost of continuous domain datasets, this research proposes a Semi-Supervised Emotion Recognition (SSER) method, which incorporates Activation-matrix Triplet loss (AMT loss) and pseudo label with Complementary Information (CI label). Specifically, the AMT loss is constructed by encoding multiple activation channels of an image as a matrix, which are utilized to capture the image similarity. The CI label firstly adopts the coupling effect of the complementary information from images and the multi-stage model for SSL to obtain high-confidence pseudo-labels. Then, entropy minimization and consistency regularization are used to improve the accuracy of pseudo labels. The SSER is evaluated on continuous domain datasets (AFEW-VA and AFF-Wild) and discrete domain datasets (FER2013 and CK+). The experimental results demonstrate that the SSER combined with AMT loss and CI label makes improvement for emotion recognition on continuous domain datasets, meanwhile the SSER is also desirable and effective for emotion recognition on discrete domain datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱静静应助科研通管家采纳,获得10
19秒前
早晚完成签到 ,获得积分10
21秒前
1分钟前
yy发布了新的文献求助10
1分钟前
爱静静应助科研通管家采纳,获得30
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
2分钟前
紫熊发布了新的文献求助10
3分钟前
玛琳卡迪马完成签到,获得积分10
3分钟前
聪明蛋关注了科研通微信公众号
3分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
李健的粉丝团团长应助sam采纳,获得10
5分钟前
方白秋完成签到,获得积分10
5分钟前
聪明蛋完成签到,获得积分20
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
李健春完成签到 ,获得积分10
6分钟前
星光完成签到 ,获得积分10
7分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
世隐完成签到,获得积分10
8分钟前
怡宝完成签到 ,获得积分10
9分钟前
紫熊发布了新的文献求助20
9分钟前
10分钟前
10分钟前
OAO完成签到,获得积分10
10分钟前
10分钟前
OAO发布了新的文献求助10
10分钟前
爱静静应助科研通管家采纳,获得10
10分钟前
爱静静应助科研通管家采纳,获得10
10分钟前
爱静静应助科研通管家采纳,获得10
10分钟前
爱静静应助科研通管家采纳,获得10
10分钟前
852应助科研通管家采纳,获得10
10分钟前
爱静静应助科研通管家采纳,获得10
10分钟前
思源应助科研通管家采纳,获得10
10分钟前
爱静静应助科研通管家采纳,获得10
10分钟前
紫熊完成签到,获得积分10
10分钟前
zxq1996完成签到 ,获得积分10
10分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207767
求助须知:如何正确求助?哪些是违规求助? 2857066
关于积分的说明 8108522
捐赠科研通 2522610
什么是DOI,文献DOI怎么找? 1355986
科研通“疑难数据库(出版商)”最低求助积分说明 642282
邀请新用户注册赠送积分活动 613674