清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Elucidating Key Characteristics of PFAS Binding to Human Peroxisome Proliferator-Activated Receptor Alpha: An Explainable Machine Learning Approach

可解释性 过氧化物酶体增殖物激活受体 机器学习 过氧化物酶体 计算生物学 过氧化物酶体增殖物激活受体α 化学 分子描述符 受体 人工智能 核受体 计算机科学 生物化学 生物 数量结构-活动关系 转录因子 基因
作者
Kazuhiro Maeda,Masashi Hirano,Taka Hayashi,Midori Iida,Hiroyuki Kurata,Hiroshi Ishibashi
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (1): 488-497 被引量:19
标识
DOI:10.1021/acs.est.3c06561
摘要

Per- and polyfluoroalkyl substances (PFAS) are widely employed anthropogenic fluorinated chemicals known to disrupt hepatic lipid metabolism by binding to human peroxisome proliferator-activated receptor alpha (PPARα). Therefore, screening for PFAS that bind to PPARα is of critical importance. Machine learning approaches are promising techniques for rapid screening of PFAS. However, traditional machine learning approaches lack interpretability, posing challenges in investigating the relationship between molecular descriptors and PPARα binding. In this study, we aimed to develop a novel, explainable machine learning approach to rapidly screen for PFAS that bind to PPARα. We calculated the PPARα-PFAS binding score and 206 molecular descriptors for PFAS. Through systematic and objective selection of important molecular descriptors, we developed a machine learning model with good predictive performance using only three descriptors. The molecular size (b_single) and electrostatic properties (BCUT_PEOE_3 and PEOE_VSA_PPOS) are important for PPARα-PFAS binding. Alternative PFAS are considered safer than their legacy predecessors. However, we found that alternative PFAS with many carbon atoms and ether groups exhibited a higher affinity for PPARα. Therefore, confirming the toxicity of these alternative PFAS compounds with such characteristics through biological experiments is important.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
freyaaaaa应助科研通管家采纳,获得30
6秒前
科研通AI2S应助ceeray23采纳,获得20
8秒前
Xixi完成签到 ,获得积分10
29秒前
35秒前
雪山飞龙发布了新的文献求助10
45秒前
大医仁心完成签到 ,获得积分10
50秒前
科研通AI2S应助ceeray23采纳,获得20
1分钟前
ceeray23发布了新的文献求助20
1分钟前
李健的小迷弟应助ceeray23采纳,获得20
1分钟前
1分钟前
希望天下0贩的0应助liwen采纳,获得10
1分钟前
1分钟前
klpkyx发布了新的文献求助10
1分钟前
klpkyx完成签到,获得积分10
1分钟前
1分钟前
liwen发布了新的文献求助10
2分钟前
DoctorTa发布了新的文献求助30
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
DoctorTa完成签到,获得积分10
2分钟前
juan完成签到 ,获得积分0
2分钟前
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得20
4分钟前
老迟到的友桃完成签到 ,获得积分10
4分钟前
开心惜梦完成签到,获得积分10
4分钟前
4分钟前
淡然觅荷完成签到 ,获得积分10
4分钟前
虚幻的岩完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
直率的笑翠完成签到 ,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
番茄酱完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554977
求助须知:如何正确求助?哪些是违规求助? 4639572
关于积分的说明 14656373
捐赠科研通 4581518
什么是DOI,文献DOI怎么找? 2512837
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503