Integrated metabolomics and transcriptomics to reveal biomarkers and mitochondrial metabolic dysregulation of premature ovarian insufficiency

代谢组学 卵巢早衰 组学 生物 表型 生物信息学 氧化应激 转录组 疾病 接收机工作特性 计算生物学 医学 内科学 内分泌学 生物化学 基因表达 基因
作者
Zou Yu,Weilong Peng,Feiwen Li,Chunming Zhu,Jiajia Wang,Hongfan Ding,Mujun Li,Hui‐Mei Wu
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:14 被引量:3
标识
DOI:10.3389/fendo.2023.1280248
摘要

Background The metabolic characteristics of premature ovarian insufficiency (POI), a reproductive endocrine disease characterized by abnormal sex hormone metabolism and follicle depletion, remain unclear. Metabolomics is a powerful tool for exploring disease phenotypes and biomarkers. This study aims to identify metabolic markers and construct diagnostic models, and elucidate the underlying pathological mechanisms for POI. Methods Non-targeted metabolomics was utilized to characterize the plasma metabolic profile of 40 patients. The metabolic markers were identified through bioinformatics and machine learning, and constructed an optimal diagnostic model by classified multi-model analysis. Enzyme-linked immunosorbent assay (ELISA) was used to verify antioxidant indexes, mitochondrial enzyme complexes, and ATP levels. Finally, integrated transcriptomics and metabolomics were used to reveal the dysregulated pathways and molecular regulatory mechanisms of POI. Results The study identified eight metabolic markers significantly correlated with ovarian reserve function. The XGBoost diagnostic model was developed based on six machine learning models, demonstrating its robust diagnostic performance and clinical applicability through the evaluation of receiver operating characteristic (ROC) curve, decision curve analysis (DCA), calibration curve, and precise recall (PR) curve. Multi-omics analysis showed that mitochondrial respiratory chain electron carrier (CoQ10) and enzyme complex subunits were down-regulated in POI. ELISA validation revealed an elevation in oxidative stress markers and a reduction in the activities of antioxidant enzymes, CoQ10, and mitochondrial enzyme complexes in POI. Conclusion Our findings highlight that mitochondrial dysfunction and energy metabolism disorders are closely related to the pathogenesis of POI. The identification of metabolic markers and predictive models holds significant implications for the diagnosis, treatment, and monitoring of POI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到,获得积分10
刚刚
小可发布了新的文献求助10
刚刚
1秒前
LKGG完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
周士乐发布了新的文献求助10
2秒前
Sunshine发布了新的文献求助10
2秒前
呼吸之野完成签到,获得积分10
3秒前
害怕的小懒虫完成签到,获得积分10
3秒前
思源应助Nefelibata采纳,获得10
4秒前
妮儿发布了新的文献求助10
4秒前
BareBear应助rosa采纳,获得10
4秒前
沉默凡桃发布了新的文献求助10
5秒前
Orange应助9℃采纳,获得10
5秒前
5秒前
一只橘子完成签到 ,获得积分10
5秒前
6秒前
韭黄发布了新的文献求助10
6秒前
西瓜发布了新的文献求助10
6秒前
Ll发布了新的文献求助10
6秒前
6秒前
wcy关注了科研通微信公众号
6秒前
7秒前
7秒前
CipherSage应助爱喝冰可乐采纳,获得10
8秒前
8秒前
bdvdsrwteges完成签到,获得积分10
8秒前
鱼雷完成签到,获得积分10
9秒前
9秒前
天天快乐应助喜洋洋采纳,获得10
9秒前
PANSIXUAN完成签到 ,获得积分10
10秒前
善良香岚发布了新的文献求助10
10秒前
10秒前
huizi完成签到,获得积分20
10秒前
RichardZ完成签到,获得积分10
10秒前
10秒前
左左发布了新的文献求助10
11秒前
执着的怜寒应助哈哈哈haha采纳,获得40
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759