Integrated metabolomics and transcriptomics to reveal biomarkers and mitochondrial metabolic dysregulation of premature ovarian insufficiency

代谢组学 卵巢早衰 组学 生物 表型 生物信息学 氧化应激 转录组 疾病 接收机工作特性 计算生物学 医学 内科学 内分泌学 生物化学 基因表达 基因
作者
Zou Yu,Weilong Peng,Feiwen Li,Chunming Zhu,Jiajia Wang,Hongfan Ding,Mujun Li,Hui‐Mei Wu
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:14 被引量:3
标识
DOI:10.3389/fendo.2023.1280248
摘要

Background The metabolic characteristics of premature ovarian insufficiency (POI), a reproductive endocrine disease characterized by abnormal sex hormone metabolism and follicle depletion, remain unclear. Metabolomics is a powerful tool for exploring disease phenotypes and biomarkers. This study aims to identify metabolic markers and construct diagnostic models, and elucidate the underlying pathological mechanisms for POI. Methods Non-targeted metabolomics was utilized to characterize the plasma metabolic profile of 40 patients. The metabolic markers were identified through bioinformatics and machine learning, and constructed an optimal diagnostic model by classified multi-model analysis. Enzyme-linked immunosorbent assay (ELISA) was used to verify antioxidant indexes, mitochondrial enzyme complexes, and ATP levels. Finally, integrated transcriptomics and metabolomics were used to reveal the dysregulated pathways and molecular regulatory mechanisms of POI. Results The study identified eight metabolic markers significantly correlated with ovarian reserve function. The XGBoost diagnostic model was developed based on six machine learning models, demonstrating its robust diagnostic performance and clinical applicability through the evaluation of receiver operating characteristic (ROC) curve, decision curve analysis (DCA), calibration curve, and precise recall (PR) curve. Multi-omics analysis showed that mitochondrial respiratory chain electron carrier (CoQ10) and enzyme complex subunits were down-regulated in POI. ELISA validation revealed an elevation in oxidative stress markers and a reduction in the activities of antioxidant enzymes, CoQ10, and mitochondrial enzyme complexes in POI. Conclusion Our findings highlight that mitochondrial dysfunction and energy metabolism disorders are closely related to the pathogenesis of POI. The identification of metabolic markers and predictive models holds significant implications for the diagnosis, treatment, and monitoring of POI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助沉默的美女采纳,获得10
刚刚
无花果应助pups采纳,获得10
刚刚
晨晨发布了新的文献求助10
刚刚
1秒前
瓜6完成签到,获得积分10
2秒前
2秒前
威武雪兰完成签到,获得积分10
2秒前
星辰大海应助11采纳,获得10
2秒前
令狐发布了新的文献求助10
2秒前
lpk发布了新的文献求助10
2秒前
依米医意发布了新的文献求助10
3秒前
3秒前
ZZY发布了新的文献求助10
3秒前
一灯大师发布了新的文献求助10
3秒前
yunyun发布了新的文献求助10
3秒前
ZeKaWa应助FLZLC采纳,获得10
4秒前
所所应助李乐乐乐乐采纳,获得10
4秒前
Hhhhh完成签到,获得积分10
4秒前
嗯嗯哈哈完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助20
5秒前
5秒前
5秒前
杨雨馨发布了新的文献求助10
6秒前
王莹发布了新的文献求助10
6秒前
852应助lll采纳,获得10
7秒前
clark完成签到,获得积分10
7秒前
7秒前
7秒前
赘婿应助晨晨采纳,获得10
7秒前
7秒前
Hello应助Chang采纳,获得10
8秒前
navvv完成签到,获得积分10
8秒前
武宗文发布了新的文献求助10
8秒前
000完成签到 ,获得积分10
8秒前
FashionBoy应助哎呀采纳,获得10
9秒前
9秒前
9秒前
灵巧的孤容完成签到,获得积分10
10秒前
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619405
求助须知:如何正确求助?哪些是违规求助? 4704160
关于积分的说明 14926129
捐赠科研通 4759826
什么是DOI,文献DOI怎么找? 2550547
邀请新用户注册赠送积分活动 1513336
关于科研通互助平台的介绍 1474401