ProSTformer: Progressive Space-Time Self-Attention Model for Short-Term Traffic Flow Forecasting

亲密度 流量(计算机网络) 计算 计算机科学 数据挖掘 流量(数学) 空格(标点符号) 比例(比率) 人工智能 地理 算法 数学 地图学 计算机安全 数学分析 几何学 操作系统
作者
Yan Xiao,Xianghua Gan,Jingjing Tang,Dapeng Zhang,Rui Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 10802-10816 被引量:2
标识
DOI:10.1109/tits.2024.3367754
摘要

Traffic flow forecasting is essential and challenging to intelligent city management and public safety. In this paper, we attempt to use a pure self-attention method in traffic flow forecasting. However, when dealing with input sequences, including large-scale regions' historical records, it is difficult for the self-attention mechanism to focus on the most relevant ones for forecasting. To address this issue, we design a progressive space-time self-attention mechanism named ProSTformer, which can reduce self-attention computation times from thousands to tens. Our design is based on two pieces of prior knowledge in the traffic flow forecasting literature: (i) spatiotemporal dependencies can be factorized into spatial and temporal dependencies; (ii) adjacent regions have more influences than distant regions, and temporal characteristics of closeness, period and trend are more important than crossed relations between them. Our ProSTformer has two characteristics. First, each block in ProSTformer highlights the unique dependencies, ProSTformer progressively focuses on spatial dependencies from local to global regions, on temporal dependencies from closeness, period and trend to crossed relations between them, and on external dependencies such as weather conditions, temperature and day-of-week. Second, we use the Tensor Rearranging technique to force the model to compute self-attention only to adjacent regions and to the unique temporal characteristic. Then, we use the Patch Merging technique to greatly reduce self-attention computation times to distant regions and crossed temporal relations. We evaluate ProSTformer on two traffic datasets and find that it performs better than sixteen baseline models. The code is available at https://github.com/yanxiao1930/ProSTformer_code/tree/main.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
00完成签到 ,获得积分10
5秒前
睡到人间煮饭时完成签到 ,获得积分10
7秒前
高尚完成签到,获得积分10
26秒前
看文献完成签到,获得积分10
26秒前
澎鱼盐完成签到,获得积分10
29秒前
草上飞完成签到 ,获得积分10
31秒前
pwang_ecust完成签到,获得积分10
31秒前
火火火小朋友完成签到 ,获得积分10
34秒前
Fn完成签到 ,获得积分10
35秒前
daijk完成签到,获得积分10
40秒前
43秒前
沉沉完成签到 ,获得积分0
49秒前
态度发布了新的文献求助10
49秒前
50秒前
huangqian完成签到,获得积分10
1分钟前
tszjw168完成签到 ,获得积分10
1分钟前
大水完成签到 ,获得积分10
1分钟前
baihehuakai完成签到 ,获得积分10
1分钟前
鹤鸣完成签到 ,获得积分10
1分钟前
why完成签到,获得积分10
1分钟前
laity完成签到,获得积分10
1分钟前
MHbb完成签到 ,获得积分10
1分钟前
天天快乐应助科研通管家采纳,获得30
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
muncy完成签到 ,获得积分10
1分钟前
陈秋完成签到,获得积分10
1分钟前
卖鱼的乌鸦完成签到,获得积分10
1分钟前
wang完成签到,获得积分10
1分钟前
jun完成签到 ,获得积分10
1分钟前
smz完成签到 ,获得积分10
1分钟前
珂珂子完成签到,获得积分10
2分钟前
keyan123发布了新的文献求助10
2分钟前
黑粉头头完成签到,获得积分10
2分钟前
清风完成签到 ,获得积分10
2分钟前
卞卞完成签到,获得积分10
2分钟前
yzxzdm完成签到 ,获得积分10
2分钟前
niumi190完成签到,获得积分10
2分钟前
keyan123发布了新的文献求助10
2分钟前
fls221完成签到,获得积分10
2分钟前
丸子完成签到 ,获得积分10
2分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164826
求助须知:如何正确求助?哪些是违规求助? 2815925
关于积分的说明 7910592
捐赠科研通 2475504
什么是DOI,文献DOI怎么找? 1318250
科研通“疑难数据库(出版商)”最低求助积分说明 632035
版权声明 602296