All‐Optically Controlled Artificial Synapse Based on Full Oxides for Low‐Power Visible Neural Network Computing

神经形态工程学 计算机科学 人工神经网络 材料科学 人工智能 突触 多层感知器 感知器 光电子学 神经科学 生物
作者
Ruqi Yang,Yue Wang,Siqin Li,Dunan Hu,Qiujiang Chen,Fei Zhuge,Zhizhen Ye,Xiaodong Pi,Jianguo Lü
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (10) 被引量:32
标识
DOI:10.1002/adfm.202312444
摘要

Abstract Artificial synapse devices are dedicated to overcoming the von Neumann bottleneck. Adopting light signals in visual information processing and computing is vital for developing next‐generation artificial neuromorphic systems. A strategy to construct all‐optically controlled artificial synaptic devices based on full oxides with amorphous ZnAlSnO/SnO heterojunction in a two‐terminal planar configuration is proposed. All synaptic behaviors are operated in the visible optical pathway, with excitatory synapse under red (635 nm) light and inhibitory synapse under green (532 nm) and blue (405 nm) lights. Based on the different inhibitory effects, two modes of long‐term depression (LTD) and RESET processes can be implemented through green and blue lights, respectively. The energy consumption of an event can be as low as 0.75 pJ. A three‐layer perceptron model is designed to classify 28 × 28‐pixel handwritten digital images and performed supervised learning using a backpropagation algorithm, demonstrating the bio‐visually inspired neuromorphic computing with a training accuracy of 92.74%. The all‐optically controlled artificial synapses with write/erasure behaviors in visible RGB region and rational microelectronic process, as presented in this work, are essential in developing future artificial neuromorphic systems and highlight the huge potential of next‐generation computer systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
了了发布了新的文献求助10
1秒前
1秒前
ZQY完成签到 ,获得积分10
1秒前
斯文败类应助正直亦旋采纳,获得10
3秒前
科研通AI5应助jijahui采纳,获得80
4秒前
Jenny应助背后的诺言采纳,获得10
4秒前
木木完成签到,获得积分10
4秒前
赤邪发布了新的文献求助10
4秒前
4秒前
keen完成签到 ,获得积分10
4秒前
et完成签到,获得积分10
5秒前
桂魄完成签到,获得积分10
5秒前
5秒前
6秒前
wang发布了新的文献求助200
7秒前
7秒前
7秒前
英姑应助snowdrift采纳,获得10
7秒前
7秒前
7秒前
jy完成签到 ,获得积分10
7秒前
NexusExplorer应助立马毕业采纳,获得10
8秒前
在水一方应助123采纳,获得10
9秒前
科目三应助白华苍松采纳,获得10
10秒前
通~发布了新的文献求助10
10秒前
CipherSage应助千幻采纳,获得10
10秒前
10秒前
dddddd完成签到,获得积分10
10秒前
桂魄发布了新的文献求助10
10秒前
年轻的咖啡豆完成签到,获得积分20
11秒前
11秒前
绿洲发布了新的文献求助10
11秒前
11秒前
12秒前
aDou完成签到 ,获得积分10
12秒前
脑洞疼应助bc采纳,获得10
12秒前
NEMO发布了新的文献求助10
12秒前
李健应助mammoth采纳,获得20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762