重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

All‐Optically Controlled Artificial Synapse Based on Full Oxides for Low‐Power Visible Neural Network Computing

神经形态工程学 计算机科学 人工神经网络 材料科学 人工智能 突触 多层感知器 感知器 光电子学 神经科学 生物
作者
Ruqi Yang,Yue Wang,Siqin Li,Dunan Hu,Qiujiang Chen,Fei Zhuge,Zhizhen Ye,Xiaodong Pi,Jianguo Lü
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (10) 被引量:69
标识
DOI:10.1002/adfm.202312444
摘要

Abstract Artificial synapse devices are dedicated to overcoming the von Neumann bottleneck. Adopting light signals in visual information processing and computing is vital for developing next‐generation artificial neuromorphic systems. A strategy to construct all‐optically controlled artificial synaptic devices based on full oxides with amorphous ZnAlSnO/SnO heterojunction in a two‐terminal planar configuration is proposed. All synaptic behaviors are operated in the visible optical pathway, with excitatory synapse under red (635 nm) light and inhibitory synapse under green (532 nm) and blue (405 nm) lights. Based on the different inhibitory effects, two modes of long‐term depression (LTD) and RESET processes can be implemented through green and blue lights, respectively. The energy consumption of an event can be as low as 0.75 pJ. A three‐layer perceptron model is designed to classify 28 × 28‐pixel handwritten digital images and performed supervised learning using a backpropagation algorithm, demonstrating the bio‐visually inspired neuromorphic computing with a training accuracy of 92.74%. The all‐optically controlled artificial synapses with write/erasure behaviors in visible RGB region and rational microelectronic process, as presented in this work, are essential in developing future artificial neuromorphic systems and highlight the huge potential of next‐generation computer systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
li发布了新的文献求助10
1秒前
2秒前
2秒前
古风欧发布了新的文献求助10
2秒前
orixero应助张夏俊采纳,获得10
2秒前
沙怀蛟发布了新的文献求助10
2秒前
4秒前
Lucas应助帕丁顿采纳,获得10
4秒前
嗯哈完成签到 ,获得积分10
4秒前
4秒前
shuyun发布了新的文献求助10
5秒前
酷酷世德发布了新的文献求助10
6秒前
小蘑菇应助yiy37采纳,获得10
6秒前
6秒前
彭于晏应助tunerling采纳,获得10
7秒前
Tian111发布了新的文献求助10
7秒前
书书发布了新的文献求助10
7秒前
阿杰发布了新的文献求助10
7秒前
HH发布了新的文献求助10
8秒前
ludong_0发布了新的文献求助30
8秒前
饱满的冰旋完成签到,获得积分10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
洪伟完成签到,获得积分10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
Owen应助li采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
9秒前
Akim应助科研通管家采纳,获得30
9秒前
9秒前
所所应助科研通管家采纳,获得10
10秒前
一杯月光完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516