FMR-YOLO: Infrared Ship Rotating Target Detection Based on Synthetic Fog and Multiscale Weighted Feature Fusion

计算机科学 融合 传感器融合 人工智能 红外线的 特征(语言学) 计算机视觉 特征提取 目标检测 模式识别(心理学) 遥感 哲学 语言学 物理 光学 地质学
作者
Huimin Deng,Ying Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-17 被引量:16
标识
DOI:10.1109/tim.2023.3336445
摘要

Infrared ship detection has important application value for ensuring navigation safety and real-time monitoring of the sea surface. It is also of great significance in marine intelligent defense and has become an important research branch in the field of computer vision. Affected by the weather at sea and the limitations of infrared cameras, infrared ship images often have the problems of small targets being submerged by noise and low information entropy, which bring great challenges to infrared ship detection. In this article, an infrared ship rotating target detection algorithm FMR-YOLO based on synthetic fog and multiscale weighted fusion is proposed. Our algorithm first corrects the noisy labels of the original dataset due to misclassification and constructs an infrared ship dataset (ISD) containing different concentrations of haze through an improved dark channel prior (DCP) algorithm. Second, in order to avoid the loss of small target features and information as the network deepens, a weighted feature pyramid network (FPN) based on dilated convolution (DWFPN) is proposed. DWFPN weights the fusion of features at different levels based on the attention mechanism to achieve high-quality information interaction. Finally, in view of the large aspect ratio and arbitrary direction of the ship target, rotation detection is introduced to obtain more accurate detection boxes and ship navigation direction information. The experimental results show that compared with the standard YOLOv7, the improved algorithm achieves a mean average accuracy (mAP) of 92.7%, and the recall rate and precision rate are improved by 2.3% and 3%, respectively. Our code and R-ISD dataset are available at: https://github.com/denghuimin1/FMR-YOLO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll应助WIN采纳,获得10
1秒前
1秒前
1秒前
Hello应助乐观的鸽子采纳,获得10
2秒前
华仔应助123采纳,获得10
3秒前
qq发布了新的文献求助10
4秒前
miga发布了新的文献求助30
5秒前
汉堡包应助巧乐兹采纳,获得10
5秒前
5秒前
甜甜玫瑰发布了新的文献求助10
7秒前
香蕉觅云应助波因斯坦采纳,获得10
7秒前
搜集达人应助Li采纳,获得10
7秒前
李健的小迷弟应助sasha采纳,获得10
7秒前
liberty发布了新的文献求助10
8秒前
10秒前
何时到达完成签到,获得积分20
12秒前
12秒前
12秒前
13504544355完成签到 ,获得积分10
12秒前
12秒前
开天神秀完成签到,获得积分10
12秒前
共享精神应助123456采纳,获得10
12秒前
13秒前
liberty完成签到,获得积分10
14秒前
今后应助WIN采纳,获得10
14秒前
顾矜应助无奈的菠萝采纳,获得10
15秒前
15秒前
15秒前
15秒前
17秒前
淡然白安发布了新的文献求助10
18秒前
SSU发布了新的文献求助10
18秒前
李健的小迷弟应助悦悦采纳,获得10
18秒前
kid1912完成签到,获得积分0
18秒前
19秒前
pappper发布了新的文献求助10
19秒前
19秒前
Healer完成签到,获得积分10
19秒前
gcc应助闪落采纳,获得20
19秒前
四文鱼发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543718
求助须知:如何正确求助?哪些是违规求助? 3121033
关于积分的说明 9345352
捐赠科研通 2819128
什么是DOI,文献DOI怎么找? 1549968
邀请新用户注册赠送积分活动 722341
科研通“疑难数据库(出版商)”最低求助积分说明 713153