DDoS2Vec: Flow-Level Characterisation of Volumetric DDoS Attacks at Scale

服务拒绝攻击 计算机科学 应用层DDoS攻击 互联网 特里诺 计算机安全 比例(比率) 人工智能 僵尸网络 钥匙(锁) 机器学习 万维网 量子力学 物理
作者
Roopkanwal Samra,Marinho Barcellos
标识
DOI:10.1145/3629135
摘要

Volumetric Distributed Denial of Service (DDoS) attacks have been a severe threat to the Internet for more than two decades. Some success in mitigation has been achieved based on numerous defensive techniques created by the research community, implemented by the industry, and deployed by network operators. However, evolution is not a privilege of mitigations, and DDoS attackers have found better strategies and continue to cause harm. A key challenge in winning this race is understanding the various characteristics of DDoS attacks in network traffic at scale and in a realistic manner. In this paper, we propose DDoS2Vec, a novel approach to characterise DDoS attacks in real-world Internet traffic using Natural Language Processing (NLP) techniques. DDoS2Vec is a domain-specific application of Latent Semantic Analysis that learns vector representations of potential DDoS attacks. We look into the link between natural language and computer network communication in a way that has not been previously studied. Our approach is evaluated on a large-scale dataset of flow samples collected from an Internet eXchange Point (IXP) in one year. We evaluate the performance of DDoS2Vec via multi-label classification in a Machine Learning (ML) scenario. DDoS2Vec characterises DDoS attacks more clearly than other baselines - including NLP-based approaches inspired by recent networks research and a basic non-NLP solution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxg郭完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
老程完成签到,获得积分10
3秒前
TiY完成签到 ,获得积分10
4秒前
激动的梦松完成签到,获得积分10
4秒前
熊猫之歌完成签到,获得积分10
5秒前
5秒前
禾女鬼完成签到,获得积分10
6秒前
yaozi完成签到,获得积分20
7秒前
西贝白白发布了新的文献求助10
8秒前
Lincoln完成签到,获得积分10
8秒前
8秒前
Zlinco完成签到,获得积分10
10秒前
杰尼龟完成签到,获得积分10
10秒前
11秒前
5易6完成签到 ,获得积分10
11秒前
一只橙子完成签到,获得积分10
11秒前
GQL完成签到,获得积分10
12秒前
威威完成签到,获得积分10
13秒前
13秒前
共享精神应助独特亦旋采纳,获得10
15秒前
GQL发布了新的文献求助10
15秒前
Daisy发布了新的文献求助10
15秒前
Huimin完成签到,获得积分10
16秒前
CipherSage应助杰尼龟采纳,获得10
16秒前
十五完成签到,获得积分10
16秒前
纪云海完成签到,获得积分10
17秒前
康家旗完成签到,获得积分10
19秒前
老实怀蝶完成签到,获得积分10
19秒前
医学机长完成签到,获得积分10
20秒前
PANSIXUAN完成签到,获得积分10
20秒前
Daisy完成签到,获得积分10
21秒前
包容的灵完成签到,获得积分10
21秒前
行舟完成签到,获得积分10
21秒前
21秒前
李爱国应助qcpassed采纳,获得10
22秒前
调皮的笑阳完成签到 ,获得积分10
22秒前
那时年少完成签到,获得积分10
22秒前
花城完成签到 ,获得积分10
25秒前
勤恳的嚓茶完成签到,获得积分10
25秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584870
求助须知:如何正确求助?哪些是违规求助? 4668749
关于积分的说明 14771869
捐赠科研通 4616114
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590