亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DDoS2Vec: Flow-Level Characterisation of Volumetric DDoS Attacks at Scale

服务拒绝攻击 计算机科学 应用层DDoS攻击 互联网 特里诺 计算机安全 比例(比率) 人工智能 僵尸网络 钥匙(锁) 机器学习 万维网 量子力学 物理
作者
Roopkanwal Samra,Marinho Barcellos
标识
DOI:10.1145/3629135
摘要

Volumetric Distributed Denial of Service (DDoS) attacks have been a severe threat to the Internet for more than two decades. Some success in mitigation has been achieved based on numerous defensive techniques created by the research community, implemented by the industry, and deployed by network operators. However, evolution is not a privilege of mitigations, and DDoS attackers have found better strategies and continue to cause harm. A key challenge in winning this race is understanding the various characteristics of DDoS attacks in network traffic at scale and in a realistic manner. In this paper, we propose DDoS2Vec, a novel approach to characterise DDoS attacks in real-world Internet traffic using Natural Language Processing (NLP) techniques. DDoS2Vec is a domain-specific application of Latent Semantic Analysis that learns vector representations of potential DDoS attacks. We look into the link between natural language and computer network communication in a way that has not been previously studied. Our approach is evaluated on a large-scale dataset of flow samples collected from an Internet eXchange Point (IXP) in one year. We evaluate the performance of DDoS2Vec via multi-label classification in a Machine Learning (ML) scenario. DDoS2Vec characterises DDoS attacks more clearly than other baselines - including NLP-based approaches inspired by recent networks research and a basic non-NLP solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
imkhun1021发布了新的文献求助10
13秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
jialin完成签到 ,获得积分10
1分钟前
迅速的月光完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
pency发布了新的文献求助10
2分钟前
2分钟前
2分钟前
林非鹿完成签到,获得积分10
2分钟前
夜云完成签到,获得积分10
2分钟前
2分钟前
2分钟前
夜云发布了新的文献求助10
2分钟前
十三月的过客完成签到,获得积分10
2分钟前
充电宝应助夜云采纳,获得10
3分钟前
3分钟前
pency完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
思源应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
cc完成签到 ,获得积分10
3分钟前
虞小苡发布了新的文献求助30
3分钟前
4分钟前
4分钟前
4分钟前
大意的晓亦完成签到 ,获得积分10
4分钟前
在水一方应助茹茹采纳,获得10
4分钟前
4分钟前
4分钟前
cxy发布了新的文献求助10
4分钟前
茹茹发布了新的文献求助10
4分钟前
努力努力再努力完成签到,获得积分10
4分钟前
cxy完成签到 ,获得积分10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455645
求助须知:如何正确求助?哪些是违规求助? 3050880
关于积分的说明 9022987
捐赠科研通 2739417
什么是DOI,文献DOI怎么找? 1502788
科研通“疑难数据库(出版商)”最低求助积分说明 694609
邀请新用户注册赠送积分活动 693400