DDoS2Vec: Flow-Level Characterisation of Volumetric DDoS Attacks at Scale

服务拒绝攻击 计算机科学 应用层DDoS攻击 互联网 特里诺 计算机安全 比例(比率) 人工智能 僵尸网络 钥匙(锁) 机器学习 万维网 量子力学 物理
作者
Roopkanwal Samra,Marinho Barcellos
标识
DOI:10.1145/3629135
摘要

Volumetric Distributed Denial of Service (DDoS) attacks have been a severe threat to the Internet for more than two decades. Some success in mitigation has been achieved based on numerous defensive techniques created by the research community, implemented by the industry, and deployed by network operators. However, evolution is not a privilege of mitigations, and DDoS attackers have found better strategies and continue to cause harm. A key challenge in winning this race is understanding the various characteristics of DDoS attacks in network traffic at scale and in a realistic manner. In this paper, we propose DDoS2Vec, a novel approach to characterise DDoS attacks in real-world Internet traffic using Natural Language Processing (NLP) techniques. DDoS2Vec is a domain-specific application of Latent Semantic Analysis that learns vector representations of potential DDoS attacks. We look into the link between natural language and computer network communication in a way that has not been previously studied. Our approach is evaluated on a large-scale dataset of flow samples collected from an Internet eXchange Point (IXP) in one year. We evaluate the performance of DDoS2Vec via multi-label classification in a Machine Learning (ML) scenario. DDoS2Vec characterises DDoS attacks more clearly than other baselines - including NLP-based approaches inspired by recent networks research and a basic non-NLP solution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助要减肥的书蕾采纳,获得10
1秒前
yashachen发布了新的文献求助20
1秒前
荆展鹏完成签到 ,获得积分10
2秒前
Orange应助圆圆901234采纳,获得10
2秒前
123456发布了新的文献求助10
2秒前
情怀应助yzy采纳,获得10
3秒前
3秒前
3秒前
TiAmo完成签到 ,获得积分10
5秒前
拼搏语薇发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
嘿嘿发布了新的文献求助10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
老福贵儿应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Return应助科研通管家采纳,获得10
7秒前
7秒前
852应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
Zsir发布了新的文献求助10
7秒前
8秒前
gcy发布了新的文献求助10
8秒前
王柯发布了新的文献求助10
10秒前
12秒前
小禾一定行完成签到 ,获得积分10
12秒前
粉色小妖精完成签到,获得积分10
12秒前
美好斓发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694602
求助须知:如何正确求助?哪些是违规求助? 5097905
关于积分的说明 15214123
捐赠科研通 4851160
什么是DOI,文献DOI怎么找? 2602174
邀请新用户注册赠送积分活动 1554051
关于科研通互助平台的介绍 1511931