DDoS2Vec: Flow-Level Characterisation of Volumetric DDoS Attacks at Scale

服务拒绝攻击 计算机科学 应用层DDoS攻击 互联网 特里诺 计算机安全 比例(比率) 人工智能 僵尸网络 钥匙(锁) 机器学习 万维网 量子力学 物理
作者
Roopkanwal Samra,Marinho Barcellos
标识
DOI:10.1145/3629135
摘要

Volumetric Distributed Denial of Service (DDoS) attacks have been a severe threat to the Internet for more than two decades. Some success in mitigation has been achieved based on numerous defensive techniques created by the research community, implemented by the industry, and deployed by network operators. However, evolution is not a privilege of mitigations, and DDoS attackers have found better strategies and continue to cause harm. A key challenge in winning this race is understanding the various characteristics of DDoS attacks in network traffic at scale and in a realistic manner. In this paper, we propose DDoS2Vec, a novel approach to characterise DDoS attacks in real-world Internet traffic using Natural Language Processing (NLP) techniques. DDoS2Vec is a domain-specific application of Latent Semantic Analysis that learns vector representations of potential DDoS attacks. We look into the link between natural language and computer network communication in a way that has not been previously studied. Our approach is evaluated on a large-scale dataset of flow samples collected from an Internet eXchange Point (IXP) in one year. We evaluate the performance of DDoS2Vec via multi-label classification in a Machine Learning (ML) scenario. DDoS2Vec characterises DDoS attacks more clearly than other baselines - including NLP-based approaches inspired by recent networks research and a basic non-NLP solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
yookia应助科研通管家采纳,获得10
刚刚
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
飞天发布了新的文献求助30
刚刚
刚刚
1秒前
爬得飞快的仲文博完成签到,获得积分10
2秒前
柯一一应助魔芋采纳,获得10
2秒前
脑洞疼应助魔芋采纳,获得10
2秒前
念之完成签到 ,获得积分10
3秒前
Ava应助Zoe_Zhang采纳,获得10
3秒前
燕子发布了新的文献求助100
3秒前
哪位完成签到,获得积分20
3秒前
Miaa发布了新的文献求助30
4秒前
合适的平安完成签到 ,获得积分10
4秒前
打打应助Winfred采纳,获得10
5秒前
小栩完成签到 ,获得积分10
5秒前
Wonder完成签到,获得积分10
7秒前
go发布了新的文献求助10
8秒前
8秒前
10秒前
10秒前
丘比特应助科研鸟采纳,获得10
10秒前
等待冬易发布了新的文献求助10
11秒前
爱笑的醉卉完成签到,获得积分10
11秒前
小二郎应助曼凡采纳,获得10
11秒前
12秒前
suolonglong完成签到,获得积分20
12秒前
安静含卉发布了新的文献求助10
12秒前
你可真下饭完成签到 ,获得积分10
13秒前
kingjames完成签到,获得积分10
14秒前
14秒前
淡然冬灵发布了新的文献求助10
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421