清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Adaptive constraint handling technique selection for constrained multi-objective optimization

计算机科学 数学优化 选择(遗传算法) 约束(计算机辅助设计) 人口 进化算法 强化学习 过程(计算) 最优化问题 人工智能 国家(计算机科学) 算法 数学 几何学 人口学 社会学 操作系统
作者
Chao Wang,Zhihao Liu,Jianfeng Qiu,Lei Zhang
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:86: 101488-101488 被引量:11
标识
DOI:10.1016/j.swevo.2024.101488
摘要

Constrained multi-objective optimization problems involve the optimization of multiple conflicting objectives simultaneously subject to a number of constraints, which pose a great challenge for the existing algorithms. When utilizing evolutionary algorithms to solve them, the constraint handling technique (CHT) plays a pivotal role in the environmental selection. Several CHTs, such as penalty functions, superiority of feasible solutions, and ϵ-constraint methods, have been developed. However, there are still some issues with the existing methods. On the one hand, different CHTs are typically better suited to specific problem and selecting the most appropriate CHT for a given problem is crucial. On the other hand, the suitability of CHTs may vary throughout different stages of the optimization process. Regrettably, limited attention has been given to the adaptive selection of CHTs. In order to address this research gap, we develop an adaptive CHT selection method based on deep reinforcement learning, allowing for the selection of CHTs that are tailored to different evolutionary states. In the proposed method, we adopt the deep Q-learning network to evaluate the impact of various CHTs and operators on the population state during evolution. Through a dynamic evaluation, the network adaptively outputs the most appropriate CHT and operator portfolio based on the current state of the population. Specifically, we propose novel state representation and reward calculation methods to accurately capture the performance of diverse actions across varying evolutionary states. Furthermore, to enhance network training, we introduce a two-stage training method that facilitates the collection of diverse samples. Moreover, this adaptive selection method can be easily integrated into the existing methods. The proposed algorithm is tested on 37 test problems, the optimal results can be achieved on 19 instances in terms of the inverted generational distance metric. Experimental results verify the proposed method generalizes well to different types of problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yeye完成签到,获得积分10
21秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
rayjin完成签到,获得积分10
1分钟前
苗苗完成签到 ,获得积分10
1分钟前
KINGAZX完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
糟糕的翅膀完成签到,获得积分10
2分钟前
2分钟前
四氧化三铁完成签到,获得积分10
2分钟前
3分钟前
3分钟前
PeterLin完成签到,获得积分10
3分钟前
鲤鱼不言发布了新的文献求助10
3分钟前
3分钟前
虚心的飞鸟完成签到 ,获得积分10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
不安的晓灵完成签到 ,获得积分10
5分钟前
紫熊完成签到,获得积分10
5分钟前
5分钟前
Nancy0818完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
zzz发布了新的文献求助10
6分钟前
LLLKAIXINGUO发布了新的文献求助10
6分钟前
zzz完成签到,获得积分10
6分钟前
6分钟前
7分钟前
传奇3应助科研通管家采纳,获得30
7分钟前
Arctic完成签到 ,获得积分10
7分钟前
Jessica完成签到,获得积分10
7分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
武雨寒完成签到 ,获得积分20
7分钟前
方白秋完成签到,获得积分10
7分钟前
LLLKAIXINGUO完成签到,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596614
求助须知:如何正确求助?哪些是违规求助? 4008465
关于积分的说明 12409239
捐赠科研通 3687520
什么是DOI,文献DOI怎么找? 2032461
邀请新用户注册赠送积分活动 1065692
科研通“疑难数据库(出版商)”最低求助积分说明 950996