Adaptive constraint handling technique selection for constrained multi-objective optimization

计算机科学 数学优化 选择(遗传算法) 约束(计算机辅助设计) 人口 进化算法 强化学习 过程(计算) 最优化问题 人工智能 国家(计算机科学) 算法 数学 人口学 社会学 操作系统 几何学
作者
Chao Wang,Zhihao Liu,Jianfeng Qiu,Lei Zhang
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:86: 101488-101488 被引量:11
标识
DOI:10.1016/j.swevo.2024.101488
摘要

Constrained multi-objective optimization problems involve the optimization of multiple conflicting objectives simultaneously subject to a number of constraints, which pose a great challenge for the existing algorithms. When utilizing evolutionary algorithms to solve them, the constraint handling technique (CHT) plays a pivotal role in the environmental selection. Several CHTs, such as penalty functions, superiority of feasible solutions, and ϵ-constraint methods, have been developed. However, there are still some issues with the existing methods. On the one hand, different CHTs are typically better suited to specific problem and selecting the most appropriate CHT for a given problem is crucial. On the other hand, the suitability of CHTs may vary throughout different stages of the optimization process. Regrettably, limited attention has been given to the adaptive selection of CHTs. In order to address this research gap, we develop an adaptive CHT selection method based on deep reinforcement learning, allowing for the selection of CHTs that are tailored to different evolutionary states. In the proposed method, we adopt the deep Q-learning network to evaluate the impact of various CHTs and operators on the population state during evolution. Through a dynamic evaluation, the network adaptively outputs the most appropriate CHT and operator portfolio based on the current state of the population. Specifically, we propose novel state representation and reward calculation methods to accurately capture the performance of diverse actions across varying evolutionary states. Furthermore, to enhance network training, we introduce a two-stage training method that facilitates the collection of diverse samples. Moreover, this adaptive selection method can be easily integrated into the existing methods. The proposed algorithm is tested on 37 test problems, the optimal results can be achieved on 19 instances in terms of the inverted generational distance metric. Experimental results verify the proposed method generalizes well to different types of problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wind应助杨一乐采纳,获得10
刚刚
1秒前
ajun完成签到,获得积分10
1秒前
2秒前
2秒前
野椰完成签到 ,获得积分10
2秒前
王浩发布了新的文献求助10
2秒前
富贵儿完成签到,获得积分20
3秒前
超哥完成签到,获得积分10
3秒前
3秒前
玊尔吡咯烷酮完成签到,获得积分10
3秒前
Hu完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
温婉的谷菱完成签到,获得积分10
4秒前
4秒前
平常的夏菡完成签到,获得积分10
5秒前
水水完成签到,获得积分10
5秒前
莽哥发布了新的文献求助10
6秒前
科研阳完成签到,获得积分10
6秒前
妖哥完成签到,获得积分10
7秒前
野椰关注了科研通微信公众号
7秒前
7秒前
安烁完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
师国瑞发布了新的文献求助10
8秒前
9秒前
hy完成签到,获得积分10
9秒前
隐形曼青应助简单宝莹采纳,获得10
9秒前
9秒前
TT完成签到,获得积分10
9秒前
love完成签到,获得积分10
9秒前
邓布利多博完成签到,获得积分10
10秒前
苏11完成签到,获得积分10
10秒前
wangguoxi完成签到,获得积分10
10秒前
开朗指甲油完成签到,获得积分20
10秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585741
求助须知:如何正确求助?哪些是违规求助? 4669361
关于积分的说明 14776911
捐赠科研通 4618356
什么是DOI,文献DOI怎么找? 2530650
邀请新用户注册赠送积分活动 1499380
关于科研通互助平台的介绍 1467750