Adaptive constraint handling technique selection for constrained multi-objective optimization

计算机科学 数学优化 选择(遗传算法) 约束(计算机辅助设计) 人口 进化算法 强化学习 过程(计算) 最优化问题 人工智能 国家(计算机科学) 代表(政治) 算法 数学 几何学 人口学 社会学 政治 政治学 法学 操作系统
作者
Chao Wang,Zhihao Liu,Jianfeng Qiu,Lei Zhang
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:86: 101488-101488 被引量:8
标识
DOI:10.1016/j.swevo.2024.101488
摘要

Constrained multi-objective optimization problems involve the optimization of multiple conflicting objectives simultaneously subject to a number of constraints, which pose a great challenge for the existing algorithms. When utilizing evolutionary algorithms to solve them, the constraint handling technique (CHT) plays a pivotal role in the environmental selection. Several CHTs, such as penalty functions, superiority of feasible solutions, and ϵ-constraint methods, have been developed. However, there are still some issues with the existing methods. On the one hand, different CHTs are typically better suited to specific problem and selecting the most appropriate CHT for a given problem is crucial. On the other hand, the suitability of CHTs may vary throughout different stages of the optimization process. Regrettably, limited attention has been given to the adaptive selection of CHTs. In order to address this research gap, we develop an adaptive CHT selection method based on deep reinforcement learning, allowing for the selection of CHTs that are tailored to different evolutionary states. In the proposed method, we adopt the deep Q-learning network to evaluate the impact of various CHTs and operators on the population state during evolution. Through a dynamic evaluation, the network adaptively outputs the most appropriate CHT and operator portfolio based on the current state of the population. Specifically, we propose novel state representation and reward calculation methods to accurately capture the performance of diverse actions across varying evolutionary states. Furthermore, to enhance network training, we introduce a two-stage training method that facilitates the collection of diverse samples. Moreover, this adaptive selection method can be easily integrated into the existing methods. The proposed algorithm is tested on 37 test problems, the optimal results can be achieved on 19 instances in terms of the inverted generational distance metric. Experimental results verify the proposed method generalizes well to different types of problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南风不竞发布了新的文献求助10
1秒前
1秒前
123发布了新的文献求助10
1秒前
ZHAO发布了新的文献求助10
1秒前
2秒前
月恒发布了新的文献求助10
2秒前
充电宝应助Peanut采纳,获得10
2秒前
我是老大应助splash采纳,获得10
2秒前
脑洞疼应助splash采纳,获得10
2秒前
木木完成签到,获得积分10
2秒前
2秒前
cqnuly发布了新的文献求助30
3秒前
木木发布了新的文献求助10
5秒前
细心蚂蚁发布了新的文献求助10
5秒前
6秒前
大鱼发布了新的文献求助10
6秒前
......发布了新的文献求助30
6秒前
026发布了新的文献求助10
7秒前
8秒前
123完成签到,获得积分20
8秒前
9秒前
11秒前
甜甜寒香发布了新的文献求助10
11秒前
白金之星完成签到 ,获得积分10
11秒前
玉米排骨汤关注了科研通微信公众号
11秒前
13秒前
13秒前
falcon完成签到,获得积分10
15秒前
16秒前
细心蚂蚁完成签到,获得积分10
16秒前
16秒前
许大脚完成签到 ,获得积分10
16秒前
16秒前
小点点发布了新的文献求助10
17秒前
Faye发布了新的文献求助10
17秒前
大鱼完成签到 ,获得积分10
18秒前
20秒前
赘婿应助1717采纳,获得10
20秒前
qitan发布了新的文献求助10
21秒前
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260739
求助须知:如何正确求助?哪些是违规求助? 2901859
关于积分的说明 8317799
捐赠科研通 2571583
什么是DOI,文献DOI怎么找? 1397109
科研通“疑难数据库(出版商)”最低求助积分说明 653642
邀请新用户注册赠送积分活动 632153