Solving Dynamic Multi-Objective Optimization Problems via Quantifying Intensity of Environment Changes and Ensemble Learning Based Prediction Strategies

计算机科学 集成学习 机器学习 人工智能 强度(物理) 数学优化 数学 物理 量子力学
作者
Zhenwu Wang,Liang Xue,Yinan Guo,Mengjie Han,Shangchao Liang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:: 111317-111317 被引量:1
标识
DOI:10.1016/j.asoc.2024.111317
摘要

Algorithms designed to solve dynamic multi-objective optimization problems (DMOPs) need to consider all of the multiple conflicting objectives to determine the optimal solutions. However, objective functions, constraints or parameters can change over time, which presents a considerable challenge. Algorithms should be able not only to identify the optimal solution but also to quickly detect and respond to any changes of environment. In order to enhance the capability of detection and response to environmental changes, we propose a dynamic multi-objective optimization (DMOO) algorithm based on the detection of environment change intensity and ensemble learning (DMOO-DECI&EL). First, we propose a method for detecting environmental change intensity, where the change intensity is quantified and used to design response strategies. Second, a series of response strategies under the framework of ensemble learning are given to handle complex environmental changes. Finally, a boundary learning method is introduced to enhance the diversity and uniformity of the solutions. Experimental results on 14 benchmark functions demonstrate that the proposed DMOO-DECI&EL algorithm achieves the best comprehensive performance across three evaluation criteria, which indicates that DMOO-DECI&EL has better robustness and convergence and can generate solutions with better diversity compared to five other state-of-the-art dynamic prediction strategies. In addition, the application of DMOO-DECI&EL to the real-world scenario, namely the economic power dispatch problem, shows that the proposed method can effectively handle real-world DMOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助豆豆采纳,获得10
2秒前
2秒前
任性灵寒发布了新的文献求助10
4秒前
4秒前
爱喝佳得乐完成签到,获得积分10
5秒前
情怀应助俭朴尔竹采纳,获得10
5秒前
6秒前
我是老大应助宋莱文采纳,获得10
7秒前
天天快乐应助萤照夜清采纳,获得10
7秒前
不想写论文完成签到 ,获得积分10
7秒前
7秒前
zeng123完成签到,获得积分20
7秒前
8秒前
饱满含玉发布了新的文献求助30
8秒前
乐观的海发布了新的文献求助100
9秒前
小小佳作发布了新的文献求助10
9秒前
11发布了新的文献求助10
11秒前
子车茗应助权小夏采纳,获得20
11秒前
zeng123发布了新的文献求助10
11秒前
王宇杰发布了新的文献求助10
11秒前
12秒前
石夜一觞发布了新的文献求助10
13秒前
Rita应助科研通管家采纳,获得10
15秒前
小神仙应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得30
15秒前
Rita应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
rebeccahu应助科研通管家采纳,获得20
15秒前
酷波er应助科研通管家采纳,获得30
15秒前
烟花应助科研通管家采纳,获得10
15秒前
15秒前
华仔应助科研通管家采纳,获得10
15秒前
15秒前
Hello应助dellajj采纳,获得10
17秒前
18秒前
JamesPei应助老木虫采纳,获得10
18秒前
wang完成签到,获得积分20
19秒前
石夜一觞完成签到,获得积分10
20秒前
hou2012发布了新的文献求助30
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459237
求助须知:如何正确求助?哪些是违规求助? 3053759
关于积分的说明 9038343
捐赠科研通 2743031
什么是DOI,文献DOI怎么找? 1504647
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664