Deep reinforcement learning-based memetic algorithm for energy-aware flexible job shop scheduling with multi-AGV

模因算法 作业车间调度 强化学习 进化算法 计算机科学 调度(生产过程) 水准点(测量) 帕累托原理 数学优化 机器学习 人工智能 数学 大地测量学 计算机网络 布线(电子设计自动化) 地理
作者
Fayong Zhang,Rui Li,Wenyin Gong
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:189: 109917-109917 被引量:17
标识
DOI:10.1016/j.cie.2024.109917
摘要

The integration of manufacturing and logistics scheduling issues in shop operations has garnered considerable attention. Concurrently, escalating concerns about global warming have propelled the emergence of green manufacturing as a critical challenge. Notably, extant research in this domain lacks an incorporation of green metrics within the framework of manufacturing and logistics-integrated scheduling. Furthermore, the determination of a critical block remains a challenging aspect, with an absence of consideration for a neighborhood structure founded on the critical block. Moreover, prior endeavors have predominantly relied on Q-learning to augment evolutionary algorithms, a strategy criticized for its limited learning capacity. Consequently, this study addresses these gaps by presenting an energy-efficient flexible job Shop scheduling with multi-autonomous guided vehicles (EFJS-AGV). The primary objectives are the simultaneous minimization of makespan and total energy consumption. To tackle this NP-hard problem, a deep Q-network-based memetic algorithm is proposed. The devised algorithm incorporates several distinctive features. Firstly, the strength Pareto evolutionary algorithm (SPEA2) is employed to swiftly explore the objective space, enhancing convergence and diversity. Secondly, four distinct local search operators based on critical paths and blocks are devised to efficiently reduce makespan. Thirdly, deep reinforcement learning is harnessed to understand the interplay between solutions and action selection. This understanding aids the evolutionary algorithm in selecting the most optimal operator. The efficacy of the proposed algorithm is rigorously evaluated through a comparative analysis with five state-of-the-art algorithms. The assessment is conducted on two benchmark datasets encompassing 20 instances. The numerical experimental results affirm the effectiveness of the proposed enhancements and algorithms. Furthermore, the superior performance of the proposed algorithm in addressing the EFJS-AGV substantiates its robustness and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Louisa发布了新的文献求助10
1秒前
chen发布了新的文献求助10
2秒前
2秒前
活泼的踏歌完成签到,获得积分10
2秒前
ASSVD完成签到,获得积分20
3秒前
科研通AI5应助生生不息采纳,获得10
3秒前
FashionBoy应助奋斗秋采纳,获得10
5秒前
5秒前
石开222完成签到,获得积分10
5秒前
guard发布了新的文献求助10
6秒前
乐至发布了新的文献求助10
6秒前
能干的树叶完成签到,获得积分10
9秒前
9秒前
10秒前
科研通AI5应助吴1采纳,获得10
10秒前
QL驳回了爱静静应助
10秒前
寻星子发布了新的文献求助10
11秒前
12秒前
研友_VZG7GZ应助jj采纳,获得30
12秒前
企鹅完成签到,获得积分10
12秒前
12秒前
大模型应助风趣青槐采纳,获得10
12秒前
北笙完成签到,获得积分10
13秒前
哈耶发布了新的文献求助30
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
14秒前
maox1aoxin应助科研通管家采纳,获得60
14秒前
爱静静应助科研通管家采纳,获得10
14秒前
斯文败类应助中中采纳,获得10
14秒前
小幻发布了新的文献求助60
14秒前
maox1aoxin应助科研通管家采纳,获得50
14秒前
kingwill应助科研通管家采纳,获得20
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
15秒前
kingwill应助科研通管家采纳,获得20
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
智者应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555252
求助须知:如何正确求助?哪些是违规求助? 3130871
关于积分的说明 9389097
捐赠科研通 2830384
什么是DOI,文献DOI怎么找? 1555991
邀请新用户注册赠送积分活动 726370
科研通“疑难数据库(出版商)”最低求助积分说明 715737