A unified deep learning framework for water quality prediction based on time-frequency feature extraction and data feature enhancement

特征(语言学) 特征提取 计算机科学 数据挖掘 模式识别(心理学) 人工智能 水质 特征选择 生态学 语言学 生物 哲学
作者
Rui Xu,Shengri Hu,Hang Wan,Yulei Xie,Yanpeng Cai,Jianhui Wen
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:351: 119894-119894 被引量:8
标识
DOI:10.1016/j.jenvman.2023.119894
摘要

Deep learning methods exhibited significant advantages in mapping highly nonlinear relationships with acceptable computational speed, and have been widely used to predict water quality. However, various model selection and construction methods resulted in differences in prediction accuracy and performance. Hence, a unified deep learning framework for water quality prediction was established in the paper, including data processing module, feature enhancement module, and data prediction module. In the established model, the data processing module based on wavelet transform method was applied to decomposing complex nonlinear meteorology, hydrology, and water quality data into multiple frequency domain signals for extracting self characteristics of data cyclic and fluctuations. The feature enhancement module based on Informer Encoder was used to enhance feature encoding of time series data in different frequency domains to discover global time dependent features of variables. Finally, the data prediction module based on the stacked bidirectional long and short term memory network (SBiLSTM) method was employed to strengthen the local correlation of feature sequences and predict the water quality. The established model framework was applied in Lijiang River in Guilin, China. The maximum relative errors between the predicted and observed values for dissolved oxygen (DO), chemical oxygen demand (CODMn) were 12.4% and 20.7%, suggesting a satisfactory prediction performance of the established model. The validation results showed that the established model was superior to all other models in terms of prediction accuracy with RMSE values 0.329, 0.121, MAE values 0.217, 0.057, SMAPE values 0.022, 0.063 for DO and CODMn, respectively. Ablation tests confirmed the necessity and rationality of each module for the established model framework. The established method provided a unified deep learning framework for water quality prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
willa完成签到,获得积分10
2秒前
3秒前
jy完成签到,获得积分10
3秒前
3秒前
烟花应助weihua93采纳,获得10
4秒前
深情的鞯发布了新的文献求助10
5秒前
在水一方应助褚浩然采纳,获得10
6秒前
依依应助白华苍松采纳,获得10
7秒前
7秒前
Fu完成签到,获得积分10
7秒前
大个应助Lyj123采纳,获得10
7秒前
yue发布了新的文献求助30
8秒前
8秒前
万能图书馆应助贝湾采纳,获得10
9秒前
9秒前
田様应助jawad采纳,获得10
9秒前
852应助醉熏的一鸣采纳,获得10
10秒前
11秒前
zhaohu47完成签到,获得积分10
11秒前
晚棠发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
Fu发布了新的文献求助10
13秒前
xh完成签到,获得积分10
14秒前
隐形曼青应助阿北采纳,获得10
15秒前
16秒前
影子发布了新的文献求助10
16秒前
搜集达人应助Morgenstern_ZH采纳,获得10
16秒前
慕青应助LTW采纳,获得10
16秒前
传奇3应助深情的鞯采纳,获得10
17秒前
17秒前
leela发布了新的文献求助10
19秒前
20秒前
彤彤发布了新的文献求助10
21秒前
三块石头发布了新的文献求助10
21秒前
田様应助koli采纳,获得10
21秒前
22秒前
JamesPei应助顾志成采纳,获得10
23秒前
善学以致用应助卷卷516采纳,获得10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458565
求助须知:如何正确求助?哪些是违规求助? 3053409
关于积分的说明 9036451
捐赠科研通 2742665
什么是DOI,文献DOI怎么找? 1504455
科研通“疑难数据库(出版商)”最低求助积分说明 695312
邀请新用户注册赠送积分活动 694484