已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Image deblurring method based on self-attention and residual wavelet transform

去模糊 人工智能 计算机科学 图像复原 模式识别(心理学) 残余物 平滑的 小波 特征(语言学) 计算机视觉 小波变换 图像融合 图像(数学) 图像处理 算法 语言学 哲学
作者
Bing Zhang,Jing Sun,Fuming Sun,Fasheng Wang,Bing Zhu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:244: 123005-123005 被引量:16
标识
DOI:10.1016/j.eswa.2023.123005
摘要

The restoration technology of non-uniform blurred images is a challenging open topic. Most of the existing algorithms fail to effectively fuse multi-scale feature extraction with a self-attention mechanism, and also ignore the potential contribution of image frequency domain information to image restoration. Frequency domain features play an important role in restoring high-quality images and ignoring this property often leads to over-smoothing of the restoration results. In response to these problems, an image deblurring method based on self-attention and residual wavelet transform is proposed in this paper. Based on a single U-Net network, the multi-scale feature cross-fusion strategy and self-attention mechanism are combined to make the network pay more attention to different degrees of blurred regions so that relatively robust blurred features can be extracted for image deblurring. Meanwhile, considering the important role of frequency domain features for image restoration, the wavelet transform is embedded into the depth residual network to convert spatial domain features to wavelet domain, and the sharp details such as edge contours of blurred features are restored by making full use of the texture structure information possessed by high-frequency sub-bands, which further improves the image restoration performance. Experimental results of quantitative and qualitative comparison with other state-of-the-art methods show that the image deblurring effect of the proposed network performs favorably in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) metrics. The codes and models are available at https://github.com/BingY998/MRDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孙壮壮发布了新的文献求助10
1秒前
2秒前
一吨好运发布了新的文献求助10
5秒前
canian完成签到,获得积分10
5秒前
故意的小松鼠完成签到,获得积分20
5秒前
飞鸟完成签到,获得积分10
5秒前
一一一完成签到 ,获得积分10
6秒前
Babe1934发布了新的文献求助10
7秒前
周杰完成签到,获得积分10
7秒前
啦咯发布了新的文献求助30
7秒前
周壹完成签到,获得积分20
11秒前
稳重的小之完成签到 ,获得积分10
11秒前
永远完成签到,获得积分10
12秒前
14秒前
test完成签到,获得积分10
14秒前
和谐的汉堡完成签到,获得积分10
15秒前
15秒前
李健的小迷弟应助终陌采纳,获得10
15秒前
陈1发布了新的文献求助10
18秒前
18秒前
小L发布了新的文献求助20
19秒前
钱都来完成签到 ,获得积分10
20秒前
Tohka完成签到 ,获得积分10
20秒前
啦咯完成签到,获得积分20
20秒前
21秒前
潇洒烨磊发布了新的文献求助10
22秒前
23秒前
23秒前
23秒前
GPTea发布了新的文献求助10
23秒前
24秒前
可爱的函函应助阿狸贱贱采纳,获得10
25秒前
SciGPT应助1111采纳,获得10
26秒前
栀璃鸳挽完成签到,获得积分10
26秒前
Talha发布了新的文献求助10
28秒前
终陌发布了新的文献求助10
28秒前
40873完成签到 ,获得积分10
31秒前
Babe1934完成签到,获得积分10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339