Transkingdom Network Analysis (TkNA): a systems framework for inferring causal factors underlying host–microbiota and other multi-omic interactions

破译 子网 计算生物学 系统生物学 推论 生物网络 中心性 网络分析 生物 因果推理 组学 软件 复杂网络 数据挖掘 生物信息学 计算机科学 人工智能 数学 物理 计算机安全 组合数学 量子力学 万维网 计量经济学 程序设计语言
作者
Nolan K. Newman,Matthew S Macovsky,Richard R. Rodrigues,Amanda M. Bruce,Jacob W. Pederson,Jyothi Padiadpu,Jigui Shan,Joshua Williams,Sankalp S Patil,Amiran Dzutsev,Natalia Shulzhenko,Giorgio Trinchieri,Kevin Brown,Andrey Morgun
出处
期刊:Nature Protocols [Springer Nature]
卷期号:19 (6): 1750-1778 被引量:13
标识
DOI:10.1038/s41596-024-00960-w
摘要

We present Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that offers a holistic view of biological systems by integrating data from multiple cohorts and diverse omics types. TkNA helps to decipher key players and mechanisms governing host–microbiota (or any multi-omic data) interactions in specific conditions or diseases. TkNA reconstructs a network that represents a statistical model capturing the complex relationships between different omics in the biological system. It identifies robust and reproducible patterns of fold change direction and correlation sign across several cohorts to select differential features and their per-group correlations. The framework then uses causality-sensitive metrics, statistical thresholds and topological criteria to determine the final edges forming the transkingdom network. With the subsequent network's topological features, TkNA identifies nodes controlling a given subnetwork or governing communication between kingdoms and/or subnetworks. The computational time for the millions of correlations necessary for network reconstruction in TkNA typically takes only a few minutes, varying with the study design. Unlike most other multi-omics approaches that find only associations, TkNA focuses on establishing causality while accounting for the complex structure of multi-omic data. It achieves this without requiring huge sample sizes. Moreover, the TkNA protocol is user friendly, requiring minimal installation and basic familiarity with Unix. Researchers can access the TkNA software at https://github.com/CAnBioNet/TkNA/ . Transkingdom Network Analysis (TkNA) is a unique analytical framework for inferring causal factors underlying host–microbiota and other multi-omic interactions, by integrating data from multiple cohorts and diverse omics types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
浮游应助哭泣代容采纳,获得10
2秒前
LBJ完成签到,获得积分10
2秒前
希希发布了新的文献求助10
3秒前
3秒前
Akim应助JAYZHANG采纳,获得10
4秒前
吴军霄完成签到,获得积分10
4秒前
4秒前
5秒前
完美世界应助黄钦清采纳,获得10
5秒前
bab发布了新的文献求助10
6秒前
tt发布了新的文献求助10
6秒前
潇洒发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
jingjing发布了新的文献求助10
7秒前
7秒前
风吹麦田应助Steven采纳,获得10
8秒前
打打应助橙子采纳,获得10
8秒前
小二郎应助弓夜声采纳,获得10
8秒前
呆萌的蚂蚁完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
果粒橙发布了新的文献求助10
11秒前
11秒前
lx840518发布了新的文献求助20
12秒前
若离发布了新的文献求助10
12秒前
13秒前
wanci应助星落枝头采纳,获得10
13秒前
清123关注了科研通微信公众号
14秒前
小蘑菇应助LBH采纳,获得10
14秒前
tt完成签到,获得积分10
14秒前
搬砖feng发布了新的文献求助10
14秒前
小蘑菇应助DJ采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436097
求助须知:如何正确求助?哪些是违规求助? 4548199
关于积分的说明 14212530
捐赠科研通 4468375
什么是DOI,文献DOI怎么找? 2448993
邀请新用户注册赠送积分活动 1439942
关于科研通互助平台的介绍 1416594