Transkingdom Network Analysis (TkNA): a systems framework for inferring causal factors underlying host–microbiota and other multi-omic interactions

破译 子网 计算生物学 系统生物学 推论 生物网络 中心性 网络分析 生物 因果推理 组学 软件 复杂网络 数据挖掘 生物信息学 计算机科学 人工智能 数学 物理 计算机安全 组合数学 量子力学 万维网 计量经济学 程序设计语言
作者
Nolan K. Newman,Matthew S Macovsky,Richard R. Rodrigues,Amanda M. Bruce,Jacob W. Pederson,Jyothi Padiadpu,Jigui Shan,Joshua Williams,Sankalp S Patil,Amiran Dzutsev,Natalia Shulzhenko,Giorgio Trinchieri,Kevin Brown,Andrey Morgun
出处
期刊:Nature Protocols [Nature Portfolio]
卷期号:19 (6): 1750-1778 被引量:7
标识
DOI:10.1038/s41596-024-00960-w
摘要

We present Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that offers a holistic view of biological systems by integrating data from multiple cohorts and diverse omics types. TkNA helps to decipher key players and mechanisms governing host–microbiota (or any multi-omic data) interactions in specific conditions or diseases. TkNA reconstructs a network that represents a statistical model capturing the complex relationships between different omics in the biological system. It identifies robust and reproducible patterns of fold change direction and correlation sign across several cohorts to select differential features and their per-group correlations. The framework then uses causality-sensitive metrics, statistical thresholds and topological criteria to determine the final edges forming the transkingdom network. With the subsequent network's topological features, TkNA identifies nodes controlling a given subnetwork or governing communication between kingdoms and/or subnetworks. The computational time for the millions of correlations necessary for network reconstruction in TkNA typically takes only a few minutes, varying with the study design. Unlike most other multi-omics approaches that find only associations, TkNA focuses on establishing causality while accounting for the complex structure of multi-omic data. It achieves this without requiring huge sample sizes. Moreover, the TkNA protocol is user friendly, requiring minimal installation and basic familiarity with Unix. Researchers can access the TkNA software at https://github.com/CAnBioNet/TkNA/ . Transkingdom Network Analysis (TkNA) is a unique analytical framework for inferring causal factors underlying host–microbiota and other multi-omic interactions, by integrating data from multiple cohorts and diverse omics types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助hhhh采纳,获得10
刚刚
刚刚
1秒前
樱桃小丸子完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
慕青应助白秋秋采纳,获得10
1秒前
1秒前
华仔应助玺白白采纳,获得10
2秒前
2秒前
Philippe发布了新的文献求助10
2秒前
斯文败类应助bamboo采纳,获得10
2秒前
普鲁斯特发布了新的文献求助10
3秒前
科研通AI5应助伶俐草丛采纳,获得10
3秒前
3秒前
wrufhg完成签到,获得积分20
3秒前
单身的淇发布了新的文献求助10
4秒前
LaTeXer重新开启了Crt文献应助
4秒前
小qin完成签到,获得积分10
4秒前
4秒前
科研通AI6应助SCI1区采纳,获得10
5秒前
5秒前
大雄先生发布了新的文献求助10
5秒前
zifeimo发布了新的文献求助10
5秒前
蕪菑发布了新的文献求助10
5秒前
6秒前
blue完成签到 ,获得积分10
6秒前
6秒前
认真难敌完成签到,获得积分10
6秒前
7秒前
一二完成签到,获得积分10
7秒前
伽翌发布了新的文献求助10
7秒前
cc发布了新的文献求助10
7秒前
坚忍发布了新的文献求助10
8秒前
深呼吸完成签到,获得积分10
8秒前
今后应助beyondjun采纳,获得10
8秒前
阿越应助普鲁斯特采纳,获得10
8秒前
自然的凝冬应助科研靓仔采纳,获得40
9秒前
9秒前
Jing完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437