Transkingdom Network Analysis (TkNA): a systems framework for inferring causal factors underlying host–microbiota and other multi-omic interactions

破译 子网 计算生物学 系统生物学 推论 生物网络 中心性 网络分析 生物 因果推理 组学 软件 复杂网络 数据挖掘 生物信息学 计算机科学 人工智能 数学 物理 计算机安全 组合数学 量子力学 万维网 计量经济学 程序设计语言
作者
Nolan K. Newman,Matthew S Macovsky,Richard R. Rodrigues,Amanda M. Bruce,Jacob W. Pederson,Jyothi Padiadpu,Jigui Shan,Joshua Williams,Sankalp S Patil,Amiran Dzutsev,Natalia Shulzhenko,Giorgio Trinchieri,Kevin Brown,Andrey Morgun
出处
期刊:Nature Protocols [Springer Nature]
卷期号:19 (6): 1750-1778 被引量:4
标识
DOI:10.1038/s41596-024-00960-w
摘要

We present Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that offers a holistic view of biological systems by integrating data from multiple cohorts and diverse omics types. TkNA helps to decipher key players and mechanisms governing host–microbiota (or any multi-omic data) interactions in specific conditions or diseases. TkNA reconstructs a network that represents a statistical model capturing the complex relationships between different omics in the biological system. It identifies robust and reproducible patterns of fold change direction and correlation sign across several cohorts to select differential features and their per-group correlations. The framework then uses causality-sensitive metrics, statistical thresholds and topological criteria to determine the final edges forming the transkingdom network. With the subsequent network's topological features, TkNA identifies nodes controlling a given subnetwork or governing communication between kingdoms and/or subnetworks. The computational time for the millions of correlations necessary for network reconstruction in TkNA typically takes only a few minutes, varying with the study design. Unlike most other multi-omics approaches that find only associations, TkNA focuses on establishing causality while accounting for the complex structure of multi-omic data. It achieves this without requiring huge sample sizes. Moreover, the TkNA protocol is user friendly, requiring minimal installation and basic familiarity with Unix. Researchers can access the TkNA software at https://github.com/CAnBioNet/TkNA/ . Transkingdom Network Analysis (TkNA) is a unique analytical framework for inferring causal factors underlying host–microbiota and other multi-omic interactions, by integrating data from multiple cohorts and diverse omics types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快如冬发布了新的文献求助10
1秒前
1秒前
ding应助赵雪杰采纳,获得10
1秒前
3秒前
4秒前
大胆冰旋关注了科研通微信公众号
5秒前
Greeking发布了新的文献求助10
6秒前
李健的粉丝团团长应助berg采纳,获得10
8秒前
雪山飞龙发布了新的文献求助10
8秒前
乏善可陈发布了新的文献求助10
8秒前
11秒前
12秒前
言苒完成签到,获得积分10
12秒前
wysxhdy发布了新的文献求助10
12秒前
14秒前
15秒前
18秒前
18秒前
成熟稳重痴情完成签到,获得积分10
18秒前
wu完成签到,获得积分10
19秒前
会飞的猪发布了新的文献求助10
20秒前
20秒前
22秒前
Lucas应助joker采纳,获得10
22秒前
好困应助乐乐采纳,获得10
24秒前
24秒前
25秒前
彭于晏应助AAAAAA采纳,获得10
26秒前
bjbmtxy完成签到,获得积分10
26秒前
Akim应助布林布林2280采纳,获得10
26秒前
26秒前
27秒前
清脆的丹南完成签到,获得积分10
28秒前
淡然发卡完成签到,获得积分10
29秒前
下雨天完成签到,获得积分20
30秒前
30秒前
853225598发布了新的文献求助10
31秒前
小何发布了新的文献求助10
31秒前
33秒前
愉快如冬完成签到,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145276
求助须知:如何正确求助?哪些是违规求助? 2796719
关于积分的说明 7820904
捐赠科研通 2452997
什么是DOI,文献DOI怎么找? 1305336
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464