Micro Transfer Learning Mechanism for Cross-Domain Equipment RUL Prediction

机制(生物学) 领域(数学分析) 计算机科学 学习迁移 人工智能 数学分析 哲学 数学 认识论
作者
Sheng Xiang,Penghua Li,Jun Luo,Yi Qin
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:10
标识
DOI:10.1109/tase.2024.3366288
摘要

Transfer learning generally addresses to reduce the distribution distance between source-domain and target-domain. However, it is unreasonable to use a distribution to represent the life-cycle signals as they are always time-varying, and the improper assumption affects the efficacy of transfer remaining useful life (RUL) prediction. To fill this gap, this research proposes a micro transfer learning mechanism for multiple differentiated distributions, and a transfer RUL prediction model is constructed. First, a multi-cellular long short-term memory (MCLSTM) neural network is applied to obtain multiple differentiated distributions of the monitoring data at some point. Then the domain adversarial mechanism is used to achieve the knowledge transfer of multiple differentiated distributions at the cell level. Furthermore, an active screen mechanism is designed for weighting the domain discrimination losses of multiple differentiated distributions. Through the transfer RUL prediction experiments on aero-engines and actual wind turbine gearboxes, the superiority of this model over the advanced transfer prediction models is verified. Note to Practitioners —The work is motivated by the accuracy reduction problem caused by the time-varying characteristics of life-cycle data in the cross domain equipment RUL prediction scenario, where a fixed single distribution is difficult to cover the full life-cycle data. This article proposes a micro transfer learning mechanism containing multiple differentiated distributions, and a novel transfer RUL prediction model based on the mechanism is constructed for solving the problem caused by the time-varying characteristics of life-cycle data. There are four steps for implementing this method in practice: 1) collecting the full-life cycle signals of historical equipment; 2) modeling the degradation curves of equipment by MCLSTM; 3) solving the cross domain RUL prediction by narrowing the distributions of degradation curves by the micro transfer learning mechanism; and 4) making prognostics for new equipment. The novelty is that the proposed mechanism can self-adaptively align multiple differentiated subspaces of the source domain and the target domain, that is, it can adaptively extract the domain invariant features over time. As a result, the proposed method has two main advantages: 1) capable of characterizing the degradation processes of different equipment; and 2) superior prognostic results on cross domain RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hrdcrhf发布了新的文献求助10
刚刚
旋转的龙发布了新的文献求助10
1秒前
1秒前
xctdyl1992发布了新的文献求助10
4秒前
wildeager完成签到,获得积分10
4秒前
忧郁丹彤发布了新的文献求助10
4秒前
4秒前
JamesPei应助传统的怀梦采纳,获得10
5秒前
FL完成签到,获得积分10
8秒前
小神完成签到,获得积分10
8秒前
8秒前
9秒前
今后应助旋转的龙采纳,获得10
10秒前
Vi发布了新的文献求助10
10秒前
阳佟听荷发布了新的文献求助10
10秒前
12秒前
Nakacoke77发布了新的文献求助10
14秒前
14秒前
脑洞疼应助秣旎采纳,获得10
16秒前
风清扬发布了新的文献求助10
16秒前
bkagyin应助xiao142采纳,获得10
16秒前
积极老黑完成签到,获得积分10
16秒前
17秒前
plateauman发布了新的文献求助10
18秒前
聪慧语风发布了新的文献求助10
20秒前
20秒前
Jim发布了新的文献求助10
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
付思远完成签到 ,获得积分10
23秒前
23秒前
24秒前
聪慧语风完成签到,获得积分10
26秒前
qqqq发布了新的文献求助10
28秒前
29秒前
29秒前
wang完成签到,获得积分10
29秒前
xiao142发布了新的文献求助10
30秒前
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167