已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Micro Transfer Learning Mechanism for Cross-Domain Equipment RUL Prediction

机制(生物学) 领域(数学分析) 计算机科学 学习迁移 人工智能 数学 认识论 数学分析 哲学
作者
Sheng Xiang,Penghua Li,Jun Luo,Yi Qin
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:10
标识
DOI:10.1109/tase.2024.3366288
摘要

Transfer learning generally addresses to reduce the distribution distance between source-domain and target-domain. However, it is unreasonable to use a distribution to represent the life-cycle signals as they are always time-varying, and the improper assumption affects the efficacy of transfer remaining useful life (RUL) prediction. To fill this gap, this research proposes a micro transfer learning mechanism for multiple differentiated distributions, and a transfer RUL prediction model is constructed. First, a multi-cellular long short-term memory (MCLSTM) neural network is applied to obtain multiple differentiated distributions of the monitoring data at some point. Then the domain adversarial mechanism is used to achieve the knowledge transfer of multiple differentiated distributions at the cell level. Furthermore, an active screen mechanism is designed for weighting the domain discrimination losses of multiple differentiated distributions. Through the transfer RUL prediction experiments on aero-engines and actual wind turbine gearboxes, the superiority of this model over the advanced transfer prediction models is verified. Note to Practitioners —The work is motivated by the accuracy reduction problem caused by the time-varying characteristics of life-cycle data in the cross domain equipment RUL prediction scenario, where a fixed single distribution is difficult to cover the full life-cycle data. This article proposes a micro transfer learning mechanism containing multiple differentiated distributions, and a novel transfer RUL prediction model based on the mechanism is constructed for solving the problem caused by the time-varying characteristics of life-cycle data. There are four steps for implementing this method in practice: 1) collecting the full-life cycle signals of historical equipment; 2) modeling the degradation curves of equipment by MCLSTM; 3) solving the cross domain RUL prediction by narrowing the distributions of degradation curves by the micro transfer learning mechanism; and 4) making prognostics for new equipment. The novelty is that the proposed mechanism can self-adaptively align multiple differentiated subspaces of the source domain and the target domain, that is, it can adaptively extract the domain invariant features over time. As a result, the proposed method has two main advantages: 1) capable of characterizing the degradation processes of different equipment; and 2) superior prognostic results on cross domain RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黄黄发布了新的文献求助10
3秒前
科研通AI6应助月月采纳,获得10
3秒前
3秒前
李晨阳发布了新的文献求助10
4秒前
Dal完成签到,获得积分10
4秒前
5秒前
诺一44发布了新的文献求助10
5秒前
gigadrill发布了新的文献求助10
5秒前
6秒前
nikki发布了新的文献求助20
7秒前
7秒前
7秒前
科研通AI6应助xwz626采纳,获得30
10秒前
杨欣发布了新的文献求助10
12秒前
杨欣发布了新的文献求助10
12秒前
杨欣发布了新的文献求助10
12秒前
杨欣发布了新的文献求助10
12秒前
杨欣发布了新的文献求助10
12秒前
Akim应助松林采纳,获得10
13秒前
14秒前
长风发布了新的文献求助10
14秒前
斗罗大陆完成签到,获得积分10
18秒前
爆米花应助西西子采纳,获得10
18秒前
xu1227应助gigadrill采纳,获得30
19秒前
20秒前
一剑温柔完成签到 ,获得积分10
21秒前
kik完成签到,获得积分20
21秒前
23秒前
wdp完成签到,获得积分10
24秒前
24秒前
ding应助Adzuki0812采纳,获得200
25秒前
我是老大应助ccleo采纳,获得30
25秒前
26秒前
YueYue发布了新的文献求助10
26秒前
27秒前
干净的灵萱关注了科研通微信公众号
28秒前
朱锐秋发布了新的文献求助10
28秒前
笨笨绿柳完成签到,获得积分20
28秒前
zx完成签到,获得积分10
28秒前
情怀应助长情无心采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934509
求助须知:如何正确求助?哪些是违规求助? 4202404
关于积分的说明 13057258
捐赠科研通 3976729
什么是DOI,文献DOI怎么找? 2179167
邀请新用户注册赠送积分活动 1195395
关于科研通互助平台的介绍 1106744