亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Micro Transfer Learning Mechanism for Cross-Domain Equipment RUL Prediction

机制(生物学) 领域(数学分析) 计算机科学 学习迁移 人工智能 数学分析 哲学 数学 认识论
作者
Sheng Xiang,Penghua Li,Jun Luo,Yi Qin
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:6
标识
DOI:10.1109/tase.2024.3366288
摘要

Transfer learning generally addresses to reduce the distribution distance between source-domain and target-domain. However, it is unreasonable to use a distribution to represent the life-cycle signals as they are always time-varying, and the improper assumption affects the efficacy of transfer remaining useful life (RUL) prediction. To fill this gap, this research proposes a micro transfer learning mechanism for multiple differentiated distributions, and a transfer RUL prediction model is constructed. First, a multi-cellular long short-term memory (MCLSTM) neural network is applied to obtain multiple differentiated distributions of the monitoring data at some point. Then the domain adversarial mechanism is used to achieve the knowledge transfer of multiple differentiated distributions at the cell level. Furthermore, an active screen mechanism is designed for weighting the domain discrimination losses of multiple differentiated distributions. Through the transfer RUL prediction experiments on aero-engines and actual wind turbine gearboxes, the superiority of this model over the advanced transfer prediction models is verified. Note to Practitioners —The work is motivated by the accuracy reduction problem caused by the time-varying characteristics of life-cycle data in the cross domain equipment RUL prediction scenario, where a fixed single distribution is difficult to cover the full life-cycle data. This article proposes a micro transfer learning mechanism containing multiple differentiated distributions, and a novel transfer RUL prediction model based on the mechanism is constructed for solving the problem caused by the time-varying characteristics of life-cycle data. There are four steps for implementing this method in practice: 1) collecting the full-life cycle signals of historical equipment; 2) modeling the degradation curves of equipment by MCLSTM; 3) solving the cross domain RUL prediction by narrowing the distributions of degradation curves by the micro transfer learning mechanism; and 4) making prognostics for new equipment. The novelty is that the proposed mechanism can self-adaptively align multiple differentiated subspaces of the source domain and the target domain, that is, it can adaptively extract the domain invariant features over time. As a result, the proposed method has two main advantages: 1) capable of characterizing the degradation processes of different equipment; and 2) superior prognostic results on cross domain RUL prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
传奇3应助yangon采纳,获得10
22秒前
25秒前
33秒前
physicalproblem完成签到,获得积分10
34秒前
37秒前
yangon发布了新的文献求助10
37秒前
38秒前
HHXXTTXS发布了新的文献求助10
43秒前
茜茜发布了新的文献求助10
44秒前
49秒前
Darcy应助科研通管家采纳,获得30
53秒前
领导范儿应助科研通管家采纳,获得10
54秒前
1分钟前
勤恳小李完成签到,获得积分10
1分钟前
华夫饼完成签到 ,获得积分10
1分钟前
1分钟前
tyd完成签到 ,获得积分10
1分钟前
1分钟前
lixundie发布了新的文献求助10
1分钟前
随性随缘随命完成签到 ,获得积分10
1分钟前
1分钟前
共享精神应助Lin采纳,获得10
1分钟前
HHXXTTXS完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
阿欢完成签到,获得积分10
2分钟前
阿欢发布了新的文献求助10
2分钟前
追寻的梦凡完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
tao完成签到 ,获得积分10
2分钟前
SciGPT应助醉熏的幼珊采纳,获得10
2分钟前
2分钟前
2分钟前
调研昵称发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229674
求助须知:如何正确求助?哪些是违规求助? 2877215
关于积分的说明 8198526
捐赠科研通 2544692
什么是DOI,文献DOI怎么找? 1374549
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621774