Prediction of MicroRNA-Disease Potential Association Based on Sparse Learning and Multilayer Random Walks

相似性(几何) 交叉验证 随机游动 联想(心理学) 人工智能 随机森林 计算机科学 疾病 差异(会计) 机器学习 数学 模式识别(心理学) 算法 统计 医学 哲学 会计 认识论 病理 业务 图像(数学)
作者
Hai-bin Yao,Zhenjie Hou,Wenguang Zhang,Han Li,Yan Chen
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:31 (3): 241-256 被引量:1
标识
DOI:10.1089/cmb.2023.0266
摘要

More and more studies have shown that microRNAs (miRNAs) play an indispensable role in the study of complex diseases in humans. Traditional biological experiments to detect miRNA-disease associations are expensive and time-consuming. Therefore, it is necessary to propose efficient and meaningful computational models to predict miRNA-disease associations. In this study, we aim to propose a miRNA-disease association prediction model based on sparse learning and multilayer random walks (SLMRWMDA). The miRNA-disease association matrix is decomposed and reconstructed by the sparse learning method to obtain richer association information, and at the same time, the initial probability matrix for the random walk with restart algorithm is obtained. The disease similarity network, miRNA similarity network, and miRNA-disease association network are used to construct heterogeneous networks, and the stable probability is obtained based on the topological structure features of diseases and miRNAs through a multilayer random walk algorithm to predict miRNA-disease potential association. The experimental results show that the prediction accuracy of this model is significantly improved compared with the previous related models. We evaluated the model using global leave-one-out cross-validation (global LOOCV) and fivefold cross-validation (5-fold CV). The area under the curve (AUC) value for the LOOCV is 0.9368. The mean AUC value for 5-fold CV is 0.9335 and the variance is 0.0004. In the case study, the results show that SLMRWMDA is effective in inferring the potential association of miRNA-disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
Moment发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
筋筋子完成签到,获得积分10
4秒前
4秒前
6秒前
Jasper应助qwerdf采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
tiptip应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
tiptip应助科研通管家采纳,获得10
7秒前
搜集达人应助机智的阿振采纳,获得10
7秒前
熬夜波比应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得30
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
8秒前
tiptip应助科研通管家采纳,获得10
8秒前
8秒前
顾矜应助可靠飞飞采纳,获得10
8秒前
葵明完成签到,获得积分10
8秒前
浮游应助南昌小霸王采纳,获得10
8秒前
小白发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675201
求助须知:如何正确求助?哪些是违规求助? 4943911
关于积分的说明 15151850
捐赠科研通 4834390
什么是DOI,文献DOI怎么找? 2589443
邀请新用户注册赠送积分活动 1543079
关于科研通互助平台的介绍 1501039