已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of MicroRNA-Disease Potential Association Based on Sparse Learning and Multilayer Random Walks

相似性(几何) 交叉验证 随机游动 联想(心理学) 人工智能 随机森林 计算机科学 疾病 差异(会计) 机器学习 数学 模式识别(心理学) 算法 统计 医学 业务 病理 哲学 会计 图像(数学) 认识论
作者
Hai-bin Yao,Zhenjie Hou,Wenguang Zhang,Han Li,Yan Chen
出处
期刊:Journal of Computational Biology [Mary Ann Liebert, Inc.]
卷期号:31 (3): 241-256 被引量:1
标识
DOI:10.1089/cmb.2023.0266
摘要

More and more studies have shown that microRNAs (miRNAs) play an indispensable role in the study of complex diseases in humans. Traditional biological experiments to detect miRNA-disease associations are expensive and time-consuming. Therefore, it is necessary to propose efficient and meaningful computational models to predict miRNA-disease associations. In this study, we aim to propose a miRNA-disease association prediction model based on sparse learning and multilayer random walks (SLMRWMDA). The miRNA-disease association matrix is decomposed and reconstructed by the sparse learning method to obtain richer association information, and at the same time, the initial probability matrix for the random walk with restart algorithm is obtained. The disease similarity network, miRNA similarity network, and miRNA-disease association network are used to construct heterogeneous networks, and the stable probability is obtained based on the topological structure features of diseases and miRNAs through a multilayer random walk algorithm to predict miRNA-disease potential association. The experimental results show that the prediction accuracy of this model is significantly improved compared with the previous related models. We evaluated the model using global leave-one-out cross-validation (global LOOCV) and fivefold cross-validation (5-fold CV). The area under the curve (AUC) value for the LOOCV is 0.9368. The mean AUC value for 5-fold CV is 0.9335 and the variance is 0.0004. In the case study, the results show that SLMRWMDA is effective in inferring the potential association of miRNA-disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倪妮完成签到,获得积分10
1秒前
2秒前
2秒前
激动的跳跳糖完成签到 ,获得积分10
2秒前
认真的寒香完成签到,获得积分10
2秒前
3秒前
君莫笑完成签到 ,获得积分10
3秒前
dadabad完成签到 ,获得积分10
3秒前
哭泣忆文完成签到,获得积分10
4秒前
祁风完成签到 ,获得积分10
4秒前
lily发布了新的文献求助20
5秒前
Danny完成签到,获得积分10
5秒前
1點點cui完成签到,获得积分10
5秒前
5秒前
6秒前
喵呜完成签到,获得积分20
6秒前
XRWei完成签到 ,获得积分10
7秒前
精明的赛凤完成签到 ,获得积分10
7秒前
qin完成签到,获得积分10
7秒前
科研通AI6应助敏敏9813采纳,获得10
7秒前
学术霸王完成签到,获得积分10
7秒前
77完成签到 ,获得积分10
7秒前
Christina完成签到,获得积分10
8秒前
Haki完成签到,获得积分10
8秒前
9秒前
小贾爱喝冰美式完成签到 ,获得积分10
9秒前
Julie完成签到 ,获得积分10
10秒前
zyb完成签到 ,获得积分10
10秒前
Quin完成签到 ,获得积分10
11秒前
dingbeicn完成签到,获得积分10
12秒前
橘子海完成签到 ,获得积分10
13秒前
ZB完成签到,获得积分10
14秒前
小纯完成签到 ,获得积分10
15秒前
虚幻的道天完成签到 ,获得积分10
15秒前
Lucky.完成签到 ,获得积分0
15秒前
Birdy Young发布了新的文献求助10
17秒前
17秒前
姚小楠完成签到 ,获得积分10
18秒前
积极一德完成签到 ,获得积分10
18秒前
cc0514gr完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252991
求助须知:如何正确求助?哪些是违规求助? 4416534
关于积分的说明 13750009
捐赠科研通 4288755
什么是DOI,文献DOI怎么找? 2353041
邀请新用户注册赠送积分活动 1349815
关于科研通互助平台的介绍 1309493

今日热心研友

沉心静气搞学习
70
差不多先生
2 20
Li
3
豆子
20
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10