Cotton Verticillium wilt monitoring based on UAV multispectral-visible multi-source feature fusion

黄萎病 粒子群优化 数学 线性回归 均方误差 人工智能 决定系数 统计 模式识别(心理学) 生物 计算机科学 植物 算法
作者
Rui Ma,Nannan Zhang,Xiao Zhang,Tiecheng Bai,Xintao Yuan,Hao Bao,Daidi He,Wujun Sun,Yong He
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:217: 108628-108628 被引量:13
标识
DOI:10.1016/j.compag.2024.108628
摘要

Verticillium wilt seriously jeopardizes cotton growth and restricts cotton yields. Therefore, it is important to accurately, rapidly, and non-destructively estimate the extent of cotton Verticillium wilt (CVW). The focus of this study was to explore the potential of combining the vegetation index (VI), color index (CI), and texture features to improve the accuracy of CVW disease severity estimation based on hexacopter Unmanned Aerial Vehicle (UAV) images. Simple Linear Regression (LR) and Multiple Linear Regression (MLR) methods were used to determine correlations between VI, CI, texture, and normalized difference texture index (NDTI) variables and cotton Verticillium wilt disease index (DI). The LR model based on VI, CI, and NDTI was constructed, VIs, CIs, and NDTIs were fused, and Grey Wolf Optimizer (GWO) Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) Backpropagation Neural Network (BP) models were constructed to comparatively explore the estimation ability of each model on the degree of CVW disease. The results showed that VI was significantly correlated with DI, followed by NDTI, and CI. Compared with texture, NDTI containing both texture features was more significantly correlated with DI. The accuracy of the DI estimation using LR was highest for the one-factor VI model (R2 > 0.48, RRMSE < 51.48), followed by the NDTI model (R2 > 0.47, RRMS < 60.81) and the CI model (R2 > 0.33, RRMSE < 52.58). The PSO-BP and GWO-ELM were further used to model the DI estimation with different input variables. Regardless of the period, the fusion of three data sources (VIs + CIs + TIs) was preferable to a single data source or a combination of two data sources for different model inputs. In terms of different modeling algorithms, GWO-ELM combining VIs, CIs, and NDTIs had the highest estimation accuracy compared with SR and PSO-BP, with a validated R2 values of 0.65 (RRMSE = 42.96) at the flowering stage, 0.66 (RRMSE = 20.00) at the flower and boll stage, and 0.88 (RRMSE = 10.53) at the boll stage. This study demonstrated that the estimation accuracy of DI was significantly improved using collaborative modeling with multiple data sources. This study provides ideas and methods for monitoring crop disease conditions using low-altitude remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木封0完成签到,获得积分0
刚刚
小吴发布了新的文献求助10
1秒前
1秒前
1秒前
qinghuan应助Anquan采纳,获得10
2秒前
大胆的琳关注了科研通微信公众号
3秒前
人来人往发布了新的文献求助10
3秒前
鸿儒发布了新的文献求助10
4秒前
科研通AI2S应助blue2021采纳,获得10
5秒前
幽默天真完成签到,获得积分10
6秒前
7秒前
C2发布了新的文献求助100
7秒前
7秒前
lmw完成签到,获得积分10
8秒前
naych发布了新的文献求助10
9秒前
刘某完成签到,获得积分10
9秒前
10秒前
整齐唯雪发布了新的文献求助10
10秒前
123123完成签到 ,获得积分10
11秒前
小杨完成签到,获得积分10
11秒前
11秒前
agd完成签到,获得积分10
11秒前
枵蕾完成签到,获得积分10
12秒前
星辰大海应助jscr采纳,获得10
12秒前
12秒前
小卡应助zh采纳,获得10
12秒前
Orange应助清爽雪枫采纳,获得10
13秒前
LIN完成签到,获得积分10
13秒前
天天快乐应助kkkkkk采纳,获得10
13秒前
cdercder应助刘某采纳,获得10
13秒前
张微浪发布了新的文献求助10
13秒前
14秒前
薛西弗斯应助整齐唯雪采纳,获得50
14秒前
14秒前
zz驳回了英姑应助
14秒前
传奇3应助我不困采纳,获得10
14秒前
科研通AI5应助xiaoliuyaonuli采纳,获得30
16秒前
17秒前
三岁半发布了新的文献求助10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3768892
求助须知:如何正确求助?哪些是违规求助? 3313845
关于积分的说明 10169393
捐赠科研通 3028741
什么是DOI,文献DOI怎么找? 1662112
邀请新用户注册赠送积分活动 794667
科研通“疑难数据库(出版商)”最低求助积分说明 756343