Cotton Verticillium wilt monitoring based on UAV multispectral-visible multi-source feature fusion

黄萎病 粒子群优化 数学 线性回归 均方误差 人工智能 决定系数 统计 模式识别(心理学) 生物 计算机科学 植物 算法
作者
Rui Ma,Nannan Zhang,Xiao Zhang,Tiecheng Bai,Xintao Yuan,Hao Bao,Daidi He,Wujun Sun,Yong He
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108628-108628 被引量:32
标识
DOI:10.1016/j.compag.2024.108628
摘要

Verticillium wilt seriously jeopardizes cotton growth and restricts cotton yields. Therefore, it is important to accurately, rapidly, and non-destructively estimate the extent of cotton Verticillium wilt (CVW). The focus of this study was to explore the potential of combining the vegetation index (VI), color index (CI), and texture features to improve the accuracy of CVW disease severity estimation based on hexacopter Unmanned Aerial Vehicle (UAV) images. Simple Linear Regression (LR) and Multiple Linear Regression (MLR) methods were used to determine correlations between VI, CI, texture, and normalized difference texture index (NDTI) variables and cotton Verticillium wilt disease index (DI). The LR model based on VI, CI, and NDTI was constructed, VIs, CIs, and NDTIs were fused, and Grey Wolf Optimizer (GWO) Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) Backpropagation Neural Network (BP) models were constructed to comparatively explore the estimation ability of each model on the degree of CVW disease. The results showed that VI was significantly correlated with DI, followed by NDTI, and CI. Compared with texture, NDTI containing both texture features was more significantly correlated with DI. The accuracy of the DI estimation using LR was highest for the one-factor VI model (R2 > 0.48, RRMSE < 51.48), followed by the NDTI model (R2 > 0.47, RRMS < 60.81) and the CI model (R2 > 0.33, RRMSE < 52.58). The PSO-BP and GWO-ELM were further used to model the DI estimation with different input variables. Regardless of the period, the fusion of three data sources (VIs + CIs + TIs) was preferable to a single data source or a combination of two data sources for different model inputs. In terms of different modeling algorithms, GWO-ELM combining VIs, CIs, and NDTIs had the highest estimation accuracy compared with SR and PSO-BP, with a validated R2 values of 0.65 (RRMSE = 42.96) at the flowering stage, 0.66 (RRMSE = 20.00) at the flower and boll stage, and 0.88 (RRMSE = 10.53) at the boll stage. This study demonstrated that the estimation accuracy of DI was significantly improved using collaborative modeling with multiple data sources. This study provides ideas and methods for monitoring crop disease conditions using low-altitude remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗冬灵完成签到 ,获得积分20
1秒前
宇月幸成发布了新的文献求助10
1秒前
昼夜本色发布了新的文献求助10
1秒前
majingwei发布了新的文献求助10
1秒前
1秒前
2秒前
xixi发布了新的文献求助10
3秒前
DouBo完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
DouBo发布了新的文献求助10
5秒前
5秒前
小蘑菇应助飞槐采纳,获得10
5秒前
guoguo完成签到,获得积分10
6秒前
6秒前
DHM发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
lei完成签到,获得积分20
7秒前
归尘应助QAQSS采纳,获得10
7秒前
呆萌冷风发布了新的文献求助10
8秒前
8秒前
Chenly发布了新的文献求助30
9秒前
123完成签到 ,获得积分10
9秒前
9秒前
AyraN完成签到,获得积分10
9秒前
9秒前
10秒前
小牛牛发布了新的文献求助10
10秒前
10秒前
LLHHZZ发布了新的文献求助10
10秒前
10秒前
大模型应助泯珉采纳,获得10
11秒前
KKZNB发布了新的文献求助10
11秒前
李健的小迷弟应助石头采纳,获得10
11秒前
wwwwwwww发布了新的文献求助10
11秒前
忧伤的冰彤完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851