Cotton Verticillium wilt monitoring based on UAV multispectral-visible multi-source feature fusion

黄萎病 粒子群优化 数学 线性回归 均方误差 人工智能 决定系数 统计 模式识别(心理学) 生物 计算机科学 植物 算法
作者
Rui Ma,Nannan Zhang,Xiao Zhang,Tiecheng Bai,Xintao Yuan,Hao Bao,Daidi He,Wujun Sun,Yong He
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:217: 108628-108628 被引量:13
标识
DOI:10.1016/j.compag.2024.108628
摘要

Verticillium wilt seriously jeopardizes cotton growth and restricts cotton yields. Therefore, it is important to accurately, rapidly, and non-destructively estimate the extent of cotton Verticillium wilt (CVW). The focus of this study was to explore the potential of combining the vegetation index (VI), color index (CI), and texture features to improve the accuracy of CVW disease severity estimation based on hexacopter Unmanned Aerial Vehicle (UAV) images. Simple Linear Regression (LR) and Multiple Linear Regression (MLR) methods were used to determine correlations between VI, CI, texture, and normalized difference texture index (NDTI) variables and cotton Verticillium wilt disease index (DI). The LR model based on VI, CI, and NDTI was constructed, VIs, CIs, and NDTIs were fused, and Grey Wolf Optimizer (GWO) Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) Backpropagation Neural Network (BP) models were constructed to comparatively explore the estimation ability of each model on the degree of CVW disease. The results showed that VI was significantly correlated with DI, followed by NDTI, and CI. Compared with texture, NDTI containing both texture features was more significantly correlated with DI. The accuracy of the DI estimation using LR was highest for the one-factor VI model (R2 > 0.48, RRMSE < 51.48), followed by the NDTI model (R2 > 0.47, RRMS < 60.81) and the CI model (R2 > 0.33, RRMSE < 52.58). The PSO-BP and GWO-ELM were further used to model the DI estimation with different input variables. Regardless of the period, the fusion of three data sources (VIs + CIs + TIs) was preferable to a single data source or a combination of two data sources for different model inputs. In terms of different modeling algorithms, GWO-ELM combining VIs, CIs, and NDTIs had the highest estimation accuracy compared with SR and PSO-BP, with a validated R2 values of 0.65 (RRMSE = 42.96) at the flowering stage, 0.66 (RRMSE = 20.00) at the flower and boll stage, and 0.88 (RRMSE = 10.53) at the boll stage. This study demonstrated that the estimation accuracy of DI was significantly improved using collaborative modeling with multiple data sources. This study provides ideas and methods for monitoring crop disease conditions using low-altitude remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pan完成签到,获得积分10
刚刚
刚刚
王睿檀发布了新的文献求助10
刚刚
活力的青易完成签到,获得积分10
刚刚
刚刚
星辰大海应助CHOU采纳,获得10
1秒前
Jiang应助YuGe采纳,获得10
2秒前
yyyyyyyy完成签到 ,获得积分10
2秒前
小蘑菇应助CheeseD采纳,获得10
2秒前
林木林完成签到 ,获得积分20
3秒前
3秒前
Iris发布了新的文献求助10
3秒前
许思真发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
柠檬泡芙完成签到,获得积分10
4秒前
111111111完成签到,获得积分10
4秒前
Hello应助刘莹采纳,获得10
4秒前
今后应助hygge采纳,获得10
5秒前
Exotic发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
111111111发布了新的文献求助10
6秒前
YYJ25完成签到,获得积分10
7秒前
酷酷发布了新的文献求助10
7秒前
开心的饼干完成签到,获得积分10
7秒前
我想要番茄完成签到,获得积分10
8秒前
8秒前
9秒前
lmm发布了新的文献求助10
9秒前
积极松鼠发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
11秒前
风中思松发布了新的文献求助10
11秒前
斑驳发布了新的文献求助10
11秒前
发发发完成签到,获得积分10
12秒前
搜集达人应助yiyi采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4605158
求助须知:如何正确求助?哪些是违规求助? 4013165
关于积分的说明 12426474
捐赠科研通 3693780
什么是DOI,文献DOI怎么找? 2036677
邀请新用户注册赠送积分活动 1069608
科研通“疑难数据库(出版商)”最低求助积分说明 953961