Cotton Verticillium wilt monitoring based on UAV multispectral-visible multi-source feature fusion

黄萎病 粒子群优化 数学 线性回归 均方误差 人工智能 决定系数 统计 模式识别(心理学) 生物 计算机科学 植物 算法
作者
Rui Ma,Nannan Zhang,Xiao Zhang,Tiecheng Bai,Xintao Yuan,Hao Bao,Daidi He,Wujun Sun,Yong He
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:217: 108628-108628 被引量:13
标识
DOI:10.1016/j.compag.2024.108628
摘要

Verticillium wilt seriously jeopardizes cotton growth and restricts cotton yields. Therefore, it is important to accurately, rapidly, and non-destructively estimate the extent of cotton Verticillium wilt (CVW). The focus of this study was to explore the potential of combining the vegetation index (VI), color index (CI), and texture features to improve the accuracy of CVW disease severity estimation based on hexacopter Unmanned Aerial Vehicle (UAV) images. Simple Linear Regression (LR) and Multiple Linear Regression (MLR) methods were used to determine correlations between VI, CI, texture, and normalized difference texture index (NDTI) variables and cotton Verticillium wilt disease index (DI). The LR model based on VI, CI, and NDTI was constructed, VIs, CIs, and NDTIs were fused, and Grey Wolf Optimizer (GWO) Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) Backpropagation Neural Network (BP) models were constructed to comparatively explore the estimation ability of each model on the degree of CVW disease. The results showed that VI was significantly correlated with DI, followed by NDTI, and CI. Compared with texture, NDTI containing both texture features was more significantly correlated with DI. The accuracy of the DI estimation using LR was highest for the one-factor VI model (R2 > 0.48, RRMSE < 51.48), followed by the NDTI model (R2 > 0.47, RRMS < 60.81) and the CI model (R2 > 0.33, RRMSE < 52.58). The PSO-BP and GWO-ELM were further used to model the DI estimation with different input variables. Regardless of the period, the fusion of three data sources (VIs + CIs + TIs) was preferable to a single data source or a combination of two data sources for different model inputs. In terms of different modeling algorithms, GWO-ELM combining VIs, CIs, and NDTIs had the highest estimation accuracy compared with SR and PSO-BP, with a validated R2 values of 0.65 (RRMSE = 42.96) at the flowering stage, 0.66 (RRMSE = 20.00) at the flower and boll stage, and 0.88 (RRMSE = 10.53) at the boll stage. This study demonstrated that the estimation accuracy of DI was significantly improved using collaborative modeling with multiple data sources. This study provides ideas and methods for monitoring crop disease conditions using low-altitude remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我是老大应助科研大啦采纳,获得10
1秒前
1秒前
SciGPT应助二十采纳,获得10
2秒前
2秒前
2秒前
Dallas完成签到,获得积分10
2秒前
cindy完成签到,获得积分10
2秒前
3秒前
3秒前
锂铂发布了新的文献求助10
4秒前
祁瓀完成签到,获得积分10
4秒前
玩命的凝天完成签到,获得积分10
5秒前
5秒前
酷炫觅双完成签到 ,获得积分10
5秒前
lbwnb2112完成签到,获得积分10
6秒前
6秒前
好为发布了新的文献求助10
6秒前
gyf发布了新的文献求助10
6秒前
田様应助ccWang采纳,获得10
7秒前
7秒前
Akarate发布了新的文献求助10
7秒前
zhouyane发布了新的文献求助10
8秒前
liuting发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
鲸鱼发布了新的文献求助10
9秒前
不吃橙子的城子完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
chounew发布了新的文献求助10
10秒前
斯文无敌完成签到,获得积分10
10秒前
A王发布了新的文献求助10
11秒前
12秒前
不吃橙子的城子关注了科研通微信公众号
12秒前
wangpinyl完成签到,获得积分10
12秒前
13秒前
科研通AI5应助老小孩采纳,获得10
13秒前
13秒前
学术小白发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5004050
求助须知:如何正确求助?哪些是违规求助? 4248425
关于积分的说明 13236715
捐赠科研通 4047627
什么是DOI,文献DOI怎么找? 2214448
邀请新用户注册赠送积分活动 1224483
关于科研通互助平台的介绍 1144880