Cotton Verticillium wilt monitoring based on UAV multispectral-visible multi-source feature fusion

黄萎病 粒子群优化 数学 线性回归 均方误差 人工智能 决定系数 统计 模式识别(心理学) 生物 计算机科学 植物 算法
作者
Rui Ma,Nannan Zhang,Xiao Zhang,Tiecheng Bai,Xintao Yuan,Hao Bao,Daidi He,Wujun Sun,Yong He
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:217: 108628-108628 被引量:13
标识
DOI:10.1016/j.compag.2024.108628
摘要

Verticillium wilt seriously jeopardizes cotton growth and restricts cotton yields. Therefore, it is important to accurately, rapidly, and non-destructively estimate the extent of cotton Verticillium wilt (CVW). The focus of this study was to explore the potential of combining the vegetation index (VI), color index (CI), and texture features to improve the accuracy of CVW disease severity estimation based on hexacopter Unmanned Aerial Vehicle (UAV) images. Simple Linear Regression (LR) and Multiple Linear Regression (MLR) methods were used to determine correlations between VI, CI, texture, and normalized difference texture index (NDTI) variables and cotton Verticillium wilt disease index (DI). The LR model based on VI, CI, and NDTI was constructed, VIs, CIs, and NDTIs were fused, and Grey Wolf Optimizer (GWO) Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) Backpropagation Neural Network (BP) models were constructed to comparatively explore the estimation ability of each model on the degree of CVW disease. The results showed that VI was significantly correlated with DI, followed by NDTI, and CI. Compared with texture, NDTI containing both texture features was more significantly correlated with DI. The accuracy of the DI estimation using LR was highest for the one-factor VI model (R2 > 0.48, RRMSE < 51.48), followed by the NDTI model (R2 > 0.47, RRMS < 60.81) and the CI model (R2 > 0.33, RRMSE < 52.58). The PSO-BP and GWO-ELM were further used to model the DI estimation with different input variables. Regardless of the period, the fusion of three data sources (VIs + CIs + TIs) was preferable to a single data source or a combination of two data sources for different model inputs. In terms of different modeling algorithms, GWO-ELM combining VIs, CIs, and NDTIs had the highest estimation accuracy compared with SR and PSO-BP, with a validated R2 values of 0.65 (RRMSE = 42.96) at the flowering stage, 0.66 (RRMSE = 20.00) at the flower and boll stage, and 0.88 (RRMSE = 10.53) at the boll stage. This study demonstrated that the estimation accuracy of DI was significantly improved using collaborative modeling with multiple data sources. This study provides ideas and methods for monitoring crop disease conditions using low-altitude remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zcydbttj2011完成签到 ,获得积分10
刚刚
温暖的小鸭子完成签到,获得积分10
2秒前
6秒前
王泽厚发布了新的文献求助20
7秒前
雪花发布了新的文献求助10
9秒前
周全完成签到 ,获得积分10
13秒前
water应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
内向忆南完成签到,获得积分10
17秒前
翱翔者完成签到 ,获得积分10
20秒前
kryptonite完成签到 ,获得积分10
20秒前
月军完成签到,获得积分10
21秒前
欢呼寻冬完成签到 ,获得积分10
22秒前
西安浴日光能赵炜完成签到,获得积分10
23秒前
Joy完成签到 ,获得积分10
24秒前
Olsters完成签到 ,获得积分10
27秒前
老程完成签到,获得积分10
28秒前
zyb完成签到 ,获得积分10
31秒前
laber完成签到,获得积分0
31秒前
yue完成签到,获得积分10
31秒前
与共完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
35秒前
gzf完成签到 ,获得积分10
36秒前
36秒前
D调的华丽完成签到,获得积分10
40秒前
xingxinghan完成签到 ,获得积分10
40秒前
ColinWine完成签到 ,获得积分10
43秒前
mix完成签到,获得积分10
43秒前
动听的谷秋完成签到 ,获得积分10
44秒前
刻苦努力的火龙果完成签到,获得积分10
45秒前
lling完成签到 ,获得积分10
48秒前
听寒完成签到,获得积分10
50秒前
珍珠火龙果完成签到 ,获得积分10
53秒前
似水流年完成签到 ,获得积分10
54秒前
sysi完成签到 ,获得积分10
1分钟前
绿波电龙完成签到,获得积分10
1分钟前
1分钟前
ZZzz完成签到 ,获得积分10
1分钟前
wujiwuhui发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022