亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cotton Verticillium wilt monitoring based on UAV multispectral-visible multi-source feature fusion

黄萎病 粒子群优化 数学 线性回归 均方误差 人工智能 决定系数 统计 模式识别(心理学) 生物 计算机科学 植物 算法
作者
Rui Ma,Nannan Zhang,Xiao Zhang,Tiecheng Bai,Xintao Yuan,Hao Bao,Duo He,Wujun Sun,Yong He
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108628-108628 被引量:6
标识
DOI:10.1016/j.compag.2024.108628
摘要

Verticillium wilt seriously jeopardizes cotton growth and restricts cotton yields. Therefore, it is important to accurately, rapidly, and non-destructively estimate the extent of cotton Verticillium wilt (CVW). The focus of this study was to explore the potential of combining the vegetation index (VI), color index (CI), and texture features to improve the accuracy of CVW disease severity estimation based on hexacopter Unmanned Aerial Vehicle (UAV) images. Simple Linear Regression (LR) and Multiple Linear Regression (MLR) methods were used to determine correlations between VI, CI, texture, and normalized difference texture index (NDTI) variables and cotton Verticillium wilt disease index (DI). The LR model based on VI, CI, and NDTI was constructed, VIs, CIs, and NDTIs were fused, and Grey Wolf Optimizer (GWO) Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) Backpropagation Neural Network (BP) models were constructed to comparatively explore the estimation ability of each model on the degree of CVW disease. The results showed that VI was significantly correlated with DI, followed by NDTI, and CI. Compared with texture, NDTI containing both texture features was more significantly correlated with DI. The accuracy of the DI estimation using LR was highest for the one-factor VI model (R2 > 0.48, RRMSE < 51.48), followed by the NDTI model (R2 > 0.47, RRMS < 60.81) and the CI model (R2 > 0.33, RRMSE < 52.58). The PSO-BP and GWO-ELM were further used to model the DI estimation with different input variables. Regardless of the period, the fusion of three data sources (VIs + CIs + TIs) was preferable to a single data source or a combination of two data sources for different model inputs. In terms of different modeling algorithms, GWO-ELM combining VIs, CIs, and NDTIs had the highest estimation accuracy compared with SR and PSO-BP, with a validated R2 values of 0.65 (RRMSE = 42.96) at the flowering stage, 0.66 (RRMSE = 20.00) at the flower and boll stage, and 0.88 (RRMSE = 10.53) at the boll stage. This study demonstrated that the estimation accuracy of DI was significantly improved using collaborative modeling with multiple data sources. This study provides ideas and methods for monitoring crop disease conditions using low-altitude remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
50秒前
1分钟前
JLHN发布了新的文献求助20
1分钟前
lbl完成签到,获得积分10
1分钟前
JLHN完成签到,获得积分10
2分钟前
科目三三次郎完成签到 ,获得积分10
3分钟前
Puan完成签到,获得积分10
4分钟前
7分钟前
zsmj23完成签到 ,获得积分0
7分钟前
zhaozhao完成签到 ,获得积分10
9分钟前
冷傲渊思完成签到,获得积分10
9分钟前
谢小盟完成签到 ,获得积分10
9分钟前
9分钟前
上官若男应助安之若素采纳,获得10
9分钟前
Perry完成签到,获得积分10
9分钟前
咕咕咕咕发布了新的文献求助30
10分钟前
咕咕咕咕完成签到,获得积分10
10分钟前
安之若素完成签到,获得积分20
10分钟前
10分钟前
安之若素发布了新的文献求助10
10分钟前
12分钟前
gszy1975发布了新的文献求助10
12分钟前
大喜子完成签到 ,获得积分10
14分钟前
科研通AI2S应助欣喜若灵采纳,获得10
14分钟前
14分钟前
欣喜若灵发布了新的文献求助10
14分钟前
赘婿应助krajicek采纳,获得30
15分钟前
15分钟前
Mayer1234088发布了新的文献求助10
15分钟前
16分钟前
krajicek发布了新的文献求助30
16分钟前
16分钟前
liufinity发布了新的文献求助10
17分钟前
柿饼完成签到,获得积分10
17分钟前
英俊的铭应助liufinity采纳,获得10
17分钟前
17分钟前
krajicek发布了新的文献求助10
17分钟前
大个应助科研通管家采纳,获得10
17分钟前
小马甲应助科研通管家采纳,获得30
17分钟前
雪糕考研完成签到 ,获得积分10
17分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805698
关于积分的说明 7865848
捐赠科研通 2463950
什么是DOI,文献DOI怎么找? 1311678
科研通“疑难数据库(出版商)”最低求助积分说明 629728
版权声明 601853