Tracking control of uncertain nonlinear systems via adaptive Gaussian process prediction and real-time optimisation

控制理论(社会学) 稳健性(进化) 前馈 非线性系统 自适应控制 计算机科学 模型预测控制 高斯过程 数学优化 控制工程 高斯分布 工程类 数学 控制(管理) 人工智能 生物化学 化学 物理 量子力学 基因
作者
Tong Ma,Jiaxing Che
出处
期刊:International Journal of Control [Taylor & Francis]
卷期号:97 (11): 2655-2668
标识
DOI:10.1080/00207179.2023.2291394
摘要

Control of nonlinear systems in the presence of model mismatch and system constraints is quite challenging. To address the issue, this work proposes an adaptive Gaussian process-based real-time optimisation (AGP-RTO) control framework. Specifically, the control law consists of two components, a feedforward tracking control law and an uncertainty compensation control law. Because GP has high flexibility to capture complex unknown functions by using very few parameters and it inherently handles measurement noise, this work utilises the GP as an alternative to estimate the mismatch between the real plant and the approximated model. During every RTO execution, the GPs adaptively update the predictions of the model mismatch, then the predictions are embedded into a nonlinear optimisation problem for the correction of the model cost and constraint functions, which yields the uncertainty compensation control law. The proposed AGP-RTO framework ensures that the Karush-Kuhn-Tucker (KKT) conditions determined by the model match those of the plant upon convergence. Compared to many direct adaptive control methods, AGP-RTO does not rely on a high gain for fast adaptation and hence it improves the robustness of the closed-loop system. Compared to the modifier adaptation (MA) method, AGP-RTO avoids the plant-gradient estimation by using the finite difference scheme, besides it trains the GP models offline, which speeds up online evaluation and improves the applicability and efficacy of real-time control. Comparisons are carried out to illustrate the superiority of the AGP-RTO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
研友_VZG7GZ应助mmol采纳,获得10
2秒前
刘善行发布了新的文献求助10
4秒前
6秒前
7秒前
SYLH应助科研通管家采纳,获得50
8秒前
Hello应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
自由的傲易完成签到,获得积分10
8秒前
田様应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
山花浪漫应助科研通管家采纳,获得10
8秒前
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
赫连立果应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
David应助科研通管家采纳,获得50
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
华仔应助聪聪great采纳,获得10
9秒前
赫连立果应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
11秒前
黄文博发布了新的文献求助10
11秒前
12秒前
科研通AI5应助yaya采纳,获得10
13秒前
大蛋发布了新的文献求助10
15秒前
16秒前
wanci应助惠惠采纳,获得30
17秒前
KK发布了新的文献求助10
17秒前
樱桃发布了新的文献求助10
17秒前
20秒前
斯可发布了新的文献求助10
21秒前
23秒前
搜集达人应助有魅力的井采纳,获得10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792