Risk of Venous Thromboembolism by Cancer Type: A Network Meta-Analysis

医学 癌症 荟萃分析 内科学 相对风险 肺癌 肿瘤科 置信区间
作者
Marissa Betts,Xuejun Liu,Daniela R. Junqueira,Kyle Fahrbach,Binod Neupane,Sarah M. Ronnebaum,Amol Dhamane
出处
期刊:Seminars in Thrombosis and Hemostasis [Thieme Medical Publishers (Germany)]
卷期号:50 (03): 328-341 被引量:3
标识
DOI:10.1055/s-0044-1779672
摘要

Abstract Patients with cancer have an increased risk of venous thromboembolism (VTE). Comparing tumor-specific VTE risk is complicated by factors such as surgery, disease stage, and chemotherapy. Network meta-analysis (NMA) using cancer types as network nodes enabled us to estimate VTE rates by leveraging comparisons across cancer types while adjusting for baseline VTE risk in individual studies. This study was conducted to estimate the risk of VTE by cancer type and factors influencing VTE risk. The Embase, MEDLINE, and Cochrane Library repositories were systematically searched to identify clinical trials and observational studies published from 2005 to 2022 that assessed the risk of primary cancer-related VTE among two or more distinct cancer types. Studies with similar cancer populations and study methods reporting VTE occurring within 1 year of diagnosis were included in the NMA. Relative VTE rates across cancer types were estimated with random-effects Bayesian NMAs. Absolute VTE rates were calculated from these estimates using the average VTE incidence in lung cancer (the most frequently reported type) as the “anchor.” From 2,603 records reviewed, 30 studies were included in this NMA. The general network described 3,948,752 patients and 18 cancer types: 3.1% experienced VTE within 1 year of diagnosis, with cancer-specific rates ranging from 0.7 to 7.4%. Consistent with existing VTE risk prediction tools, pancreatic cancer was associated with higher-than-average VTE risk. Other cancer types with high VTE risk were brain and ovarian cancers. The relative rankings of VTE risk for certain cancers changed based on disease stage and/or receipt of chemotherapy or surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aragakkl完成签到,获得积分10
1秒前
mojito完成签到,获得积分10
1秒前
mwy发布了新的文献求助10
1秒前
蛋黄派完成签到,获得积分10
2秒前
搜集达人应助小次之山采纳,获得50
2秒前
2秒前
默默白开水完成签到 ,获得积分10
2秒前
KKKK完成签到,获得积分10
3秒前
xcx完成签到,获得积分10
3秒前
4秒前
duke完成签到,获得积分10
4秒前
keyaner完成签到,获得积分10
4秒前
ywb发布了新的文献求助30
5秒前
机智谷蕊完成签到,获得积分10
5秒前
Leung完成签到,获得积分10
6秒前
研友_LJGXgn完成签到,获得积分10
6秒前
泡泡球完成签到,获得积分10
7秒前
张益达完成签到,获得积分10
7秒前
rinki01发布了新的文献求助10
7秒前
CHEN.CHENG完成签到,获得积分10
8秒前
pcr163应助栀初采纳,获得80
8秒前
Jasper应助南至采纳,获得10
8秒前
优秀的乐曲完成签到,获得积分10
8秒前
小余发布了新的文献求助10
9秒前
Jasper应助kang采纳,获得10
10秒前
山260完成签到 ,获得积分10
10秒前
10秒前
打打应助冷傲的水儿采纳,获得10
11秒前
旺旺小仙贝完成签到,获得积分20
11秒前
量子星尘发布了新的文献求助10
12秒前
芒果好高完成签到,获得积分10
12秒前
13秒前
大个应助Goodenough采纳,获得10
13秒前
wanci应助时安采纳,获得10
14秒前
包钰韬发布了新的文献求助20
14秒前
无略完成签到,获得积分10
14秒前
阿牛完成签到,获得积分10
15秒前
wdy111举报小海狸求助涉嫌违规
16秒前
Star1983发布了新的文献求助10
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582