Strong robust copy-move forgery detection network based on layer-by-layer decoupling refinement

解耦(概率) 图层(电子) 计算机科学 像素 人工智能 模式识别(心理学) 数据挖掘 相似性(几何) 网络层 稳健性(进化) 图像(数学) 工程类 化学 有机化学 控制工程 基因 生物化学
作者
Jingyu Wang,Xuesong Gao,Jie Nie,Xiaodong Wang,Lei Huang,Weizhi Nie,Mingxing Jiang,Zhiqiang Wei
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103685-103685 被引量:15
标识
DOI:10.1016/j.ipm.2024.103685
摘要

This paper proposes an all-encompassing methodology called Strong Robust Copy-Move Forgery Detection Network based on Layer-by-Layer Decoupling Refinement (DRNet) which concentrates on detecting a pair of structurally complete similar areas (the source and the tampered area) in the copy-move forgery image by fully extracting the semantically irrelevant shallow information. The DRNet consists of two interacting modules: the Coarse Similarity Area Detection (CD) module and the Shallow Suppression Similarity Area Detection (SD) module. Specifically, the CD module is leveraged to obtain a coarse locating of similar target areas which also work as prior knowledge to guide the detection of the SD module. The SD module fully mines the suppressed information at the shallow layer of the network through layer-by-layer decoupling and uses it as a supplement to refine the coarse detection from the CD module. In addition, we propose a High-Order Self-Correlation Scheme (HS) by dealing with the problem of introducing noise during the process of utilizing the shallow feature to avoid false alarms and improve the robustness. The designed experiments are conducted on USC-ISI CMFD, CASIA CMFD, and CoMoFoD public datasets and the pixel-level F1 score tested by DRnet is improved by 2.27%, 3.82%, and 4.60% respectively than State-of-the-Art in CMFD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WSH发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
DDDD发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
shenli完成签到,获得积分10
1秒前
明理的霸完成签到,获得积分10
1秒前
2秒前
陈焕燃发布了新的文献求助10
2秒前
赘婿应助CYM采纳,获得10
3秒前
3秒前
goo发布了新的文献求助30
3秒前
诚心的砖头完成签到,获得积分10
3秒前
3秒前
木南发布了新的文献求助10
3秒前
xiaolv发布了新的文献求助10
3秒前
4秒前
秋墨发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
内向的静曼完成签到 ,获得积分10
5秒前
shenli发布了新的文献求助10
5秒前
ddsyg126发布了新的文献求助10
5秒前
5秒前
6秒前
dodonaomi发布了新的文献求助10
6秒前
6秒前
研友_VZG7GZ应助缥缈老九采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587509
求助须知:如何正确求助?哪些是违规求助? 4670670
关于积分的说明 14783758
捐赠科研通 4623041
什么是DOI,文献DOI怎么找? 2531297
邀请新用户注册赠送积分活动 1499973
关于科研通互助平台的介绍 1468080