Heterogeneous Ensemble Federated Learning with GAN-based Privacy Preservation

联合学习 计算机科学 推论 同步(交流) 集成学习 机器学习 自治 人工智能 数据挖掘 电信 频道(广播) 政治学 法学
作者
Meng Chen,Hengzhu Liu,Huanhuan Chi,Ping Xiong
出处
期刊:IEEE transactions on sustainable computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 591-601
标识
DOI:10.1109/tsusc.2024.3350040
摘要

Multi-party collaborative learning has become a paradigm for large-scale knowledge discovery in the era of big data. As a typical form of collaborative learning, federated learning (FL) has received widespread research attention in recent years. In practice, however, FL faces a range of challenges such as objective inconsistency, communication and synchronization issues, due to the heterogeneity in the clients' local datasets and devices. In this paper, we propose EnsembleFed, a novel ensemble framework for heterogeneous FL. The proposed framework first allows each client to train a local model with full autonomy and without having to consider the heterogeneity of local datasets. The confidence scores of training samples output by each local model are then perturbed to defend against membership inference attacks, after which they are submitted to the server for use in constructing the global model. We apply a GAN-based method to generate calibrated noise for confidence perturbation. Benefiting from the ensemble framework, EnsembleFed disengages from the restriction of real-time synchronization and achieves collaborative learning with lower communication costs than traditional FL. Experiments on real-world datasets demonstrate that the proposed EnsembleFed can significantly improve the performance of the global model while also effectively defending against membership inference attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jessie发布了新的文献求助10
刚刚
传奇3应助温柔若颜采纳,获得10
1秒前
2秒前
2秒前
3秒前
Aic发布了新的文献求助10
4秒前
5秒前
西瓜味小黄人完成签到,获得积分10
9秒前
curtisness应助Jessie采纳,获得10
9秒前
宴之思完成签到,获得积分10
9秒前
伯赏芷烟完成签到,获得积分10
10秒前
蜘蛛道理完成签到 ,获得积分10
10秒前
12秒前
Orange应助甜蜜笑阳采纳,获得10
12秒前
深情安青应助李N采纳,获得10
15秒前
16秒前
斯文明杰发布了新的文献求助10
17秒前
达西秋关注了科研通微信公众号
18秒前
甜蜜笑阳完成签到,获得积分10
18秒前
19秒前
ff完成签到,获得积分10
22秒前
温柔若颜发布了新的文献求助10
26秒前
27秒前
27秒前
细胞核发布了新的文献求助10
27秒前
28秒前
shallgun发布了新的文献求助10
29秒前
30秒前
32秒前
34秒前
细胞核完成签到,获得积分20
36秒前
Mhj13810发布了新的文献求助10
40秒前
汉堡包应助吉吉米米采纳,获得10
40秒前
研友_xnEOX8完成签到,获得积分10
41秒前
42秒前
不安毛豆发布了新的文献求助10
46秒前
桐桐应助渤大彭于晏采纳,获得10
46秒前
cx330完成签到 ,获得积分10
48秒前
温以凡完成签到,获得积分10
48秒前
48秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149289
求助须知:如何正确求助?哪些是违规求助? 2800391
关于积分的说明 7839862
捐赠科研通 2457980
什么是DOI,文献DOI怎么找? 1308158
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706