Heterogeneous Ensemble Federated Learning with GAN-based Privacy Preservation

联合学习 计算机科学 推论 同步(交流) 集成学习 机器学习 自治 人工智能 数据挖掘 电信 频道(广播) 政治学 法学
作者
Meng Chen,Hengzhu Liu,Huanhuan Chi,Ping Xiong
出处
期刊:IEEE transactions on sustainable computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 591-601
标识
DOI:10.1109/tsusc.2024.3350040
摘要

Multi-party collaborative learning has become a paradigm for large-scale knowledge discovery in the era of big data. As a typical form of collaborative learning, federated learning (FL) has received widespread research attention in recent years. In practice, however, FL faces a range of challenges such as objective inconsistency, communication and synchronization issues, due to the heterogeneity in the clients' local datasets and devices. In this paper, we propose EnsembleFed, a novel ensemble framework for heterogeneous FL. The proposed framework first allows each client to train a local model with full autonomy and without having to consider the heterogeneity of local datasets. The confidence scores of training samples output by each local model are then perturbed to defend against membership inference attacks, after which they are submitted to the server for use in constructing the global model. We apply a GAN-based method to generate calibrated noise for confidence perturbation. Benefiting from the ensemble framework, EnsembleFed disengages from the restriction of real-time synchronization and achieves collaborative learning with lower communication costs than traditional FL. Experiments on real-world datasets demonstrate that the proposed EnsembleFed can significantly improve the performance of the global model while also effectively defending against membership inference attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
少年旭发布了新的文献求助10
2秒前
2秒前
2秒前
Xdy发布了新的文献求助10
2秒前
科研牛马发布了新的文献求助10
3秒前
bkagyin应助子小孙采纳,获得10
4秒前
君与同行发布了新的文献求助10
4秒前
4秒前
内向面包完成签到,获得积分10
6秒前
尊敬的怡发布了新的文献求助10
6秒前
7秒前
123发布了新的文献求助10
8秒前
君与同行完成签到,获得积分10
9秒前
9秒前
qingmao完成签到,获得积分10
10秒前
11秒前
wanghuihui发布了新的文献求助30
12秒前
LaTeXer应助科研通管家采纳,获得100
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得100
13秒前
思源应助茶马采纳,获得10
13秒前
wop111应助科研通管家采纳,获得20
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
SciGPT应助大聪明采纳,获得10
14秒前
15秒前
17秒前
傲娇皮皮虾完成签到 ,获得积分10
17秒前
17秒前
石铜完成签到,获得积分20
18秒前
完美世界应助asdfgh采纳,获得80
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4906958
求助须知:如何正确求助?哪些是违规求助? 4184247
关于积分的说明 12993374
捐赠科研通 3950583
什么是DOI,文献DOI怎么找? 2166565
邀请新用户注册赠送积分活动 1185172
关于科研通互助平台的介绍 1091461