Real-Time Object Detection in Occluded Environment with Background Cluttering Effects Using Deep Learning

计算机科学 人工智能 预处理器 目标检测 帧(网络) 深度学习 计算机视觉 噪音(视频) 模式识别(心理学) 对象(语法) 还原(数学) 机器学习 图像(数学) 几何学 数学 电信
作者
Syed Muhammad Aamir,Hui Ma,Malak Abid Ali Khan,Muhammad Aaqib
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2401.00986
摘要

Detection of small, undetermined moving objects or objects in an occluded environment with a cluttered background is the main problem of computer vision. This greatly affects the detection accuracy of deep learning models. To overcome these problems, we concentrate on deep learning models for real-time detection of cars and tanks in an occluded environment with a cluttered background employing SSD and YOLO algorithms and improved precision of detection and reduce problems faced by these models. The developed method makes the custom dataset and employs a preprocessing technique to clean the noisy dataset. For training the developed model we apply the data augmentation technique to balance and diversify the data. We fine-tuned, trained, and evaluated these models on the established dataset by applying these techniques and highlighting the results we got more accurately than without applying these techniques. The accuracy and frame per second of the SSD-Mobilenet v2 model are higher than YOLO V3 and YOLO V4. Furthermore, by employing various techniques like data enhancement, noise reduction, parameter optimization, and model fusion we improve the effectiveness of detection and recognition. We further added a counting algorithm, and target attributes experimental comparison, and made a graphical user interface system for the developed model with features of object counting, alerts, status, resolution, and frame per second. Subsequently, to justify the importance of the developed method analysis of YOLO V3, V4, and SSD were incorporated. Which resulted in the overall completion of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
鹤轩发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
大太阳完成签到,获得积分10
2秒前
3秒前
3秒前
FFFFcom完成签到,获得积分10
4秒前
暖暖的禾日完成签到,获得积分10
5秒前
wzw发布了新的文献求助10
5秒前
5秒前
千朝词发布了新的文献求助10
5秒前
samal完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
Akim应助jean52158采纳,获得10
6秒前
7秒前
8秒前
哈哈哈发布了新的文献求助10
8秒前
8秒前
322628发布了新的文献求助10
8秒前
全明星阿杜完成签到,获得积分10
8秒前
Jasper应助kk采纳,获得10
9秒前
八云嘤发布了新的文献求助10
10秒前
斯文的慕儿完成签到 ,获得积分10
10秒前
11秒前
李晨阳发布了新的文献求助10
11秒前
12秒前
无花果应助Tycoon采纳,获得10
12秒前
12秒前
管小有理完成签到,获得积分10
13秒前
Zp发布了新的文献求助10
14秒前
MchemG应助Gyr060307采纳,获得10
15秒前
小二郎应助不解其中味采纳,获得10
15秒前
15秒前
小马甲应助qiqi采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
17秒前
爱学习的小霸完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770841
求助须知:如何正确求助?哪些是违规求助? 5587884
关于积分的说明 15425568
捐赠科研通 4904243
什么是DOI,文献DOI怎么找? 2638612
邀请新用户注册赠送积分活动 1586491
关于科研通互助平台的介绍 1541597