Real-Time Object Detection in Occluded Environment with Background Cluttering Effects Using Deep Learning

计算机科学 人工智能 预处理器 目标检测 帧(网络) 深度学习 计算机视觉 噪音(视频) 模式识别(心理学) 对象(语法) 还原(数学) 机器学习 图像(数学) 电信 几何学 数学
作者
Syed Muhammad Aamir,Hui Ma,Malak Abid Ali Khan,Muhammad Aaqib
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2401.00986
摘要

Detection of small, undetermined moving objects or objects in an occluded environment with a cluttered background is the main problem of computer vision. This greatly affects the detection accuracy of deep learning models. To overcome these problems, we concentrate on deep learning models for real-time detection of cars and tanks in an occluded environment with a cluttered background employing SSD and YOLO algorithms and improved precision of detection and reduce problems faced by these models. The developed method makes the custom dataset and employs a preprocessing technique to clean the noisy dataset. For training the developed model we apply the data augmentation technique to balance and diversify the data. We fine-tuned, trained, and evaluated these models on the established dataset by applying these techniques and highlighting the results we got more accurately than without applying these techniques. The accuracy and frame per second of the SSD-Mobilenet v2 model are higher than YOLO V3 and YOLO V4. Furthermore, by employing various techniques like data enhancement, noise reduction, parameter optimization, and model fusion we improve the effectiveness of detection and recognition. We further added a counting algorithm, and target attributes experimental comparison, and made a graphical user interface system for the developed model with features of object counting, alerts, status, resolution, and frame per second. Subsequently, to justify the importance of the developed method analysis of YOLO V3, V4, and SSD were incorporated. Which resulted in the overall completion of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助AN采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得30
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
Sakura9235完成签到 ,获得积分10
1秒前
1秒前
咸鱼不翻身应助小米粥采纳,获得10
1秒前
2秒前
浮游应助KBRS采纳,获得10
2秒前
我是老大应助繁荣的夏烟采纳,获得10
3秒前
4秒前
平安只喜乐完成签到,获得积分10
4秒前
苹果不平完成签到,获得积分10
4秒前
4秒前
Pinkie完成签到,获得积分10
5秒前
坦率依柔发布了新的文献求助30
5秒前
小何发布了新的文献求助10
6秒前
stay发布了新的文献求助10
6秒前
嗯嗯完成签到,获得积分10
6秒前
7秒前
7秒前
小胡胡完成签到,获得积分10
7秒前
7秒前
人生苦短完成签到,获得积分10
7秒前
8秒前
晨之曦光完成签到,获得积分20
9秒前
无花果应助粉蒸肉采纳,获得10
10秒前
人生苦短发布了新的文献求助10
11秒前
11秒前
Bailey完成签到,获得积分10
11秒前
在水一方应助ysl采纳,获得10
11秒前
11秒前
希望天下0贩的0应助Dora采纳,获得10
12秒前
乐观的颦发布了新的文献求助10
12秒前
文6发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576966
求助须知:如何正确求助?哪些是违规求助? 4662231
关于积分的说明 14740378
捐赠科研通 4602878
什么是DOI,文献DOI怎么找? 2525991
邀请新用户注册赠送积分活动 1495885
关于科研通互助平台的介绍 1465470