Real-Time Object Detection in Occluded Environment with Background Cluttering Effects Using Deep Learning

计算机科学 人工智能 预处理器 目标检测 帧(网络) 深度学习 计算机视觉 噪音(视频) 模式识别(心理学) 对象(语法) 还原(数学) 机器学习 图像(数学) 几何学 数学 电信
作者
Syed Muhammad Aamir,Hui Ma,Malak Abid Ali Khan,Muhammad Aaqib
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2401.00986
摘要

Detection of small, undetermined moving objects or objects in an occluded environment with a cluttered background is the main problem of computer vision. This greatly affects the detection accuracy of deep learning models. To overcome these problems, we concentrate on deep learning models for real-time detection of cars and tanks in an occluded environment with a cluttered background employing SSD and YOLO algorithms and improved precision of detection and reduce problems faced by these models. The developed method makes the custom dataset and employs a preprocessing technique to clean the noisy dataset. For training the developed model we apply the data augmentation technique to balance and diversify the data. We fine-tuned, trained, and evaluated these models on the established dataset by applying these techniques and highlighting the results we got more accurately than without applying these techniques. The accuracy and frame per second of the SSD-Mobilenet v2 model are higher than YOLO V3 and YOLO V4. Furthermore, by employing various techniques like data enhancement, noise reduction, parameter optimization, and model fusion we improve the effectiveness of detection and recognition. We further added a counting algorithm, and target attributes experimental comparison, and made a graphical user interface system for the developed model with features of object counting, alerts, status, resolution, and frame per second. Subsequently, to justify the importance of the developed method analysis of YOLO V3, V4, and SSD were incorporated. Which resulted in the overall completion of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王发布了新的文献求助10
刚刚
初吻还在完成签到,获得积分10
1秒前
MADKAI发布了新的文献求助10
1秒前
Asss完成签到,获得积分10
1秒前
1秒前
时光友岸完成签到,获得积分10
2秒前
3秒前
昭昭完成签到,获得积分10
3秒前
niu1完成签到,获得积分10
4秒前
铃兰完成签到,获得积分10
4秒前
尘尘完成签到,获得积分10
4秒前
5秒前
yan完成签到,获得积分20
5秒前
5秒前
小鹿斑比完成签到 ,获得积分10
6秒前
洛洛完成签到 ,获得积分10
6秒前
浮华乱世完成签到 ,获得积分10
6秒前
otaro完成签到,获得积分10
6秒前
万能图书馆应助zsqqqqq采纳,获得10
6秒前
领导范儿应助zhonghbush采纳,获得10
7秒前
reck发布了新的文献求助10
7秒前
舒服的鱼完成签到 ,获得积分10
7秒前
7秒前
WLL完成签到,获得积分10
7秒前
7秒前
罗mian发布了新的文献求助10
7秒前
轻松的雨旋完成签到,获得积分10
8秒前
星辰大海应助小宇采纳,获得10
8秒前
啦啦啦发布了新的文献求助10
9秒前
zxk完成签到,获得积分10
9秒前
9秒前
10秒前
xjx完成签到 ,获得积分10
10秒前
酷炫大树发布了新的文献求助10
11秒前
orixero应助凶狠的盼柳采纳,获得10
11秒前
阿翼完成签到 ,获得积分10
11秒前
妮露的修狗完成签到,获得积分10
11秒前
乐园完成签到,获得积分10
11秒前
开朗满天完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672