Real-Time Object Detection in Occluded Environment with Background Cluttering Effects Using Deep Learning

计算机科学 人工智能 预处理器 目标检测 帧(网络) 深度学习 计算机视觉 噪音(视频) 模式识别(心理学) 对象(语法) 还原(数学) 机器学习 图像(数学) 电信 几何学 数学
作者
Syed Muhammad Aamir,Hui Ma,Malak Abid Ali Khan,Muhammad Aaqib
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2401.00986
摘要

Detection of small, undetermined moving objects or objects in an occluded environment with a cluttered background is the main problem of computer vision. This greatly affects the detection accuracy of deep learning models. To overcome these problems, we concentrate on deep learning models for real-time detection of cars and tanks in an occluded environment with a cluttered background employing SSD and YOLO algorithms and improved precision of detection and reduce problems faced by these models. The developed method makes the custom dataset and employs a preprocessing technique to clean the noisy dataset. For training the developed model we apply the data augmentation technique to balance and diversify the data. We fine-tuned, trained, and evaluated these models on the established dataset by applying these techniques and highlighting the results we got more accurately than without applying these techniques. The accuracy and frame per second of the SSD-Mobilenet v2 model are higher than YOLO V3 and YOLO V4. Furthermore, by employing various techniques like data enhancement, noise reduction, parameter optimization, and model fusion we improve the effectiveness of detection and recognition. We further added a counting algorithm, and target attributes experimental comparison, and made a graphical user interface system for the developed model with features of object counting, alerts, status, resolution, and frame per second. Subsequently, to justify the importance of the developed method analysis of YOLO V3, V4, and SSD were incorporated. Which resulted in the overall completion of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
小柠完成签到,获得积分10
2秒前
zhouzhou发布了新的文献求助20
2秒前
TTT完成签到,获得积分10
4秒前
higgs发布了新的文献求助10
4秒前
5秒前
shunlibiye完成签到,获得积分10
6秒前
夏雨微凉完成签到,获得积分10
7秒前
yuna发布了新的文献求助50
7秒前
孤独的珩发布了新的文献求助10
7秒前
7秒前
8秒前
bkagyin应助星空物语采纳,获得10
8秒前
9秒前
下雨天完成签到,获得积分10
9秒前
大个应助Liolsy采纳,获得10
11秒前
等风来完成签到,获得积分10
11秒前
JihanHuang123完成签到,获得积分10
11秒前
11秒前
灵巧的书文应助yujia采纳,获得10
12秒前
聪慧芷巧发布了新的文献求助10
12秒前
irvinzp完成签到,获得积分10
12秒前
浑语堂应助鬼笔环肽采纳,获得10
12秒前
梁十一完成签到,获得积分10
12秒前
123完成签到,获得积分10
13秒前
13秒前
好好做人完成签到,获得积分20
14秒前
14秒前
牛不可完成签到,获得积分10
15秒前
左辄发布了新的文献求助10
15秒前
小柠发布了新的文献求助10
15秒前
16秒前
传奇3应助欣喜谷槐采纳,获得10
16秒前
孤独的珩完成签到,获得积分10
17秒前
背后海亦应助温馨采纳,获得20
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3496094
关于积分的说明 11080521
捐赠科研通 3226507
什么是DOI,文献DOI怎么找? 1783918
邀请新用户注册赠送积分活动 867946
科研通“疑难数据库(出版商)”最低求助积分说明 800993