A bearing fault diagnosis method with improved symplectic geometry mode decomposition and feature selection

阿达布思 人工智能 特征选择 模式识别(心理学) 计算机科学 辛几何 算法 断层(地质) 特征(语言学) 特征向量 稳健性(进化) 噪音(视频) 支持向量机 数学 几何学 图像(数学) 语言学 哲学 生物化学 化学 地震学 基因 地质学
作者
Shengfan Chen,Xiaoxia Zheng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 046111-046111 被引量:8
标识
DOI:10.1088/1361-6501/ad1ba4
摘要

Abstract A rolling bearing fault diagnosis method based on improved symplectic geometry mode decomposition (SGMD) and feature selection was proposed to solve the problem of low fault identification due to the influence of noise on early bearing fault features. First, the SGMD SGMD is improved to enhance its robustness in decomposing signals with noise, then the time domain, frequency domain, and time-frequency features of each symplectic geometric component are extracted as feature vectors. Second, a comprehensive feature selection strategy is proposed to select the optimal subset of features that are conducive to fault classification. Finally, considering the problem of low classification accuracy of a single machine learning model, the AdaBoost-WSO-SVM model is constructed for fault classification using the AdaBoost algorithm of integrated learning. Experimental decomposition of complex signals with noise indicates that the improved SGMD is more effective compared to traditional SGMD. Subsequently, multiple experiments were conducted using the bearing datasets from Case Western Reserve University (CWRU) and Jiangnan University (JNU). The experimental results reveal that, after comprehensive feature selection and ensemble learning pattern recognition experiments on the CWRU dataset, the average accuracy of fault diagnosis can reach 99.67%. On the JNU dataset, the proposed fault diagnosis method achieves an average accuracy of 95.03%. This suggests that, compared to other feature selection methods and classification models, the proposed approach in this paper exhibits higher accuracy and generalization capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZhS_发布了新的文献求助10
1秒前
研友_ng94q8发布了新的文献求助10
1秒前
1秒前
nenoaowu应助淡定小白菜采纳,获得30
2秒前
斯文败类应助冰美式采纳,获得10
2秒前
希望天下0贩的0应助Ttttt采纳,获得10
2秒前
顾矜应助丢丢第采纳,获得10
3秒前
小石头发布了新的文献求助30
4秒前
爆米花应助小白采纳,获得10
4秒前
qwert发布了新的文献求助10
4秒前
chenfu发布了新的文献求助10
4秒前
YY完成签到 ,获得积分10
7秒前
DL应助菠萝采纳,获得10
7秒前
9秒前
菌酱完成签到,获得积分10
9秒前
11秒前
哈哈给哈哈的求助进行了留言
12秒前
小猪发布了新的文献求助10
13秒前
corner发布了新的文献求助10
13秒前
13秒前
情怀应助刘字绮采纳,获得10
14秒前
14秒前
无心客应助WW采纳,获得30
14秒前
思源应助一见喜采纳,获得10
15秒前
汉堡包应助隋玉采纳,获得10
16秒前
隐形曼青应助znlion采纳,获得10
16秒前
YHDing发布了新的文献求助10
16秒前
执着的弱完成签到,获得积分10
16秒前
17秒前
12138完成签到,获得积分10
18秒前
无心发布了新的文献求助10
19秒前
无限的雨梅完成签到 ,获得积分10
19秒前
999完成签到,获得积分10
20秒前
21秒前
ZhS_完成签到,获得积分20
21秒前
li完成签到 ,获得积分10
22秒前
kyer完成签到 ,获得积分10
22秒前
22秒前
22秒前
年轻冰萍发布了新的文献求助10
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344089
求助须知:如何正确求助?哪些是违规求助? 4479449
关于积分的说明 13942876
捐赠科研通 4376498
什么是DOI,文献DOI怎么找? 2404811
邀请新用户注册赠送积分活动 1397185
关于科研通互助平台的介绍 1369514