A bearing fault diagnosis method with improved symplectic geometry mode decomposition and feature selection

阿达布思 人工智能 特征选择 模式识别(心理学) 计算机科学 辛几何 算法 断层(地质) 特征(语言学) 特征向量 稳健性(进化) 噪音(视频) 支持向量机 数学 几何学 图像(数学) 基因 地质学 哲学 生物化学 语言学 地震学 化学
作者
Shengfan Chen,Xiaoxia Zheng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 046111-046111 被引量:6
标识
DOI:10.1088/1361-6501/ad1ba4
摘要

Abstract A rolling bearing fault diagnosis method based on improved symplectic geometry mode decomposition (SGMD) and feature selection was proposed to solve the problem of low fault identification due to the influence of noise on early bearing fault features. First, the SGMD SGMD is improved to enhance its robustness in decomposing signals with noise, then the time domain, frequency domain, and time-frequency features of each symplectic geometric component are extracted as feature vectors. Second, a comprehensive feature selection strategy is proposed to select the optimal subset of features that are conducive to fault classification. Finally, considering the problem of low classification accuracy of a single machine learning model, the AdaBoost-WSO-SVM model is constructed for fault classification using the AdaBoost algorithm of integrated learning. Experimental decomposition of complex signals with noise indicates that the improved SGMD is more effective compared to traditional SGMD. Subsequently, multiple experiments were conducted using the bearing datasets from Case Western Reserve University (CWRU) and Jiangnan University (JNU). The experimental results reveal that, after comprehensive feature selection and ensemble learning pattern recognition experiments on the CWRU dataset, the average accuracy of fault diagnosis can reach 99.67%. On the JNU dataset, the proposed fault diagnosis method achieves an average accuracy of 95.03%. This suggests that, compared to other feature selection methods and classification models, the proposed approach in this paper exhibits higher accuracy and generalization capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wq00发布了新的文献求助10
刚刚
刚刚
李健应助完美的橘子采纳,获得30
刚刚
1秒前
依依完成签到 ,获得积分10
1秒前
1秒前
友好惜儿完成签到 ,获得积分10
1秒前
黑化小狗发布了新的文献求助20
1秒前
qiqi完成签到 ,获得积分10
2秒前
azw完成签到,获得积分10
3秒前
万能图书馆应助自然1111采纳,获得10
3秒前
沉默的婴发布了新的文献求助10
4秒前
nz完成签到,获得积分10
4秒前
yuanhao发布了新的文献求助10
5秒前
5秒前
5秒前
zl完成签到 ,获得积分10
6秒前
Wind发布了新的文献求助10
7秒前
7秒前
完美世界应助只如初采纳,获得10
8秒前
8秒前
supersunshine完成签到,获得积分10
8秒前
wys完成签到 ,获得积分10
8秒前
8秒前
8秒前
传奇3应助大白采纳,获得10
8秒前
乔垣结衣发布了新的文献求助20
9秒前
9秒前
孙福禄应助诚心小兔子采纳,获得10
9秒前
AL发布了新的文献求助10
9秒前
完美的橘子完成签到,获得积分20
9秒前
动人的怀柔完成签到,获得积分10
10秒前
10秒前
时闲应助yuanhao采纳,获得10
10秒前
果果发布了新的文献求助10
10秒前
即使没有月亮完成签到,获得积分10
10秒前
小二郎应助enen采纳,获得10
11秒前
CodeCraft应助斯文幻儿采纳,获得10
11秒前
852应助高兴的平露采纳,获得10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650