Detection of Adversarial Attacks via Disentangling Natural Images and Perturbations

对抗制 计算机科学 人工智能 推论 图像(数学) 算法 模式识别(心理学) 机器学习
作者
Yuanyuan Qing,Tao Bai,Zhuotao Liu,Pierre Moulin,Bihan Wen
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 2814-2825 被引量:2
标识
DOI:10.1109/tifs.2024.3352837
摘要

The vulnerability of deep neural networks against adversarial attacks, i.e ., imperceptible adversarial perturbations can easily give rise to wrong predictions, poses a huge threat to the security of their real-world deployments. In this paper, a novel Adversarial Detection method via Disentangling Natural images and Perturbations (ADDNP) is proposed. Compared to natural images that can typically be modeled by lower-dimensional subspaces or manifolds, the distributions of adversarial perturbations are much more complex, e.g ., one normal example's adversarial counterparts generated by different attack strategies can be significantly distinct. The proposed ADDNP exploits such distinct properties for the detection of adversarial attacks amongst normal examples. Specifically, we use a dual-branch disentangling framework to encode natural images and perturbations of inputs separately, followed by joint reconstruction. During inference, the reconstruction discrepancy (RD) measured in the learned latent feature space is used as an indicator of adversarial perturbations. The proposed ADDNP algorithm is evaluated on three popular datasets, i.e ., CIFAR-10, CIFAR-100, and mini ImageNet with increasing data complexity, across multiple popular attack strategies. Compared to the existing and state-of-the-art detection methods, ADDNP has demonstrated promising performance on adversarial detection, with significant improvements on more challenging datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菠萝发布了新的文献求助10
1秒前
晓榮发布了新的文献求助10
1秒前
JamesPei应助wanhe采纳,获得30
1秒前
1秒前
1秒前
2秒前
2秒前
kingwill应助薇子采纳,获得20
2秒前
血小板发布了新的文献求助20
3秒前
3秒前
3秒前
WWW发布了新的文献求助10
3秒前
kenny完成签到,获得积分10
4秒前
4秒前
活泼新儿发布了新的文献求助10
5秒前
tiantian发布了新的文献求助10
5秒前
wu-sang完成签到,获得积分10
5秒前
5秒前
田様应助余书文采纳,获得30
6秒前
Jason举报曹超国求助涉嫌违规
6秒前
6秒前
迟迟发布了新的文献求助10
7秒前
张小小发布了新的文献求助30
7秒前
CR7完成签到,获得积分10
7秒前
粽子发布了新的文献求助10
8秒前
8秒前
唐唐发布了新的文献求助10
8秒前
研团团发布了新的文献求助10
9秒前
左丘傲菡发布了新的文献求助10
9秒前
俊秀的芫发布了新的文献求助10
9秒前
9秒前
小蝴蝶发布了新的文献求助10
10秒前
10秒前
上官若男应助rekha采纳,获得10
10秒前
opticalff完成签到,获得积分10
12秒前
12秒前
青岩发布了新的文献求助10
12秒前
大模型应助李唯佳采纳,获得10
13秒前
情怀应助程希采纳,获得30
13秒前
二虎发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551993
求助须知:如何正确求助?哪些是违规求助? 3128458
关于积分的说明 9377942
捐赠科研通 2827506
什么是DOI,文献DOI怎么找? 1554423
邀请新用户注册赠送积分活动 725468
科研通“疑难数据库(出版商)”最低求助积分说明 714899