水溶液
二价
材料科学
电解质
阴极
石墨烯
载流子
扩散
离子
化学物理
纳米技术
化学
化学工程
光电子学
物理化学
物理
电极
有机化学
热力学
工程类
作者
Shengwei Li,Xudong Zhao,Tianhao Wang,Jiae Wu,Xinghe Xu,Ping Li,Xiaobo Ji,Hongshuai Hou,Xuanhui Qu,Lifang Jiao,Yongchang Liu
标识
DOI:10.1002/anie.202320075
摘要
Abstract The utilization rate of active sites in cathode materials for Zn‐based batteries is a key factor determining the reversible capacities. However, a long‐neglected issue of the strong electrostatic repulsions among divalent Zn 2+ in hosts inevitably causes the squander of some active sites (i.e., gap sites). Herein, we address this conundrum by unraveling the “gap‐filling” mechanism of multiple charge carriers in aqueous Zn‐MoS 2 batteries. The tailored MoS 2 /(reduced graphene quantum dots) hybrid features an ultra‐large interlayer spacing (2.34 nm), superior electrical conductivity/hydrophilicity, and robust layered structure, demonstrating highly reversible NH 4 + /Zn 2+ /H + co‐insertion/extraction chemistry in the 1 M ZnSO 4 +0.5 M (NH 4 ) 2 SO 4 aqueous electrolyte. The NH 4 + and H + ions can act as gap fillers to fully utilize the active sites and screen electrostatic interactions to accelerate the Zn 2+ diffusion. Thus, unprecedentedly high rate capability (439.5 and 104.3 mAh g −1 at 0.1 and 30 A g −1 , respectively) and ultra‐long cycling life (8000 cycles) are achieved.
科研通智能强力驱动
Strongly Powered by AbleSci AI