荧光粉
发光
材料科学
光子上转换
红外线的
分析化学(期刊)
荧光
热膨胀
离子
光电子学
光学
化学
复合材料
色谱法
物理
有机化学
作者
Zhihao Chen,Yangke Cun,Shilei Yan,Yingzhu Zi,Bokun Zhu,Keliang Ruan,Bojie Ding,Zhengmeng Yang,Asif Ali Haider,Imran Khan,Cherkasova Tatiana,Jianbei Qiu,Anjun Huang,Yue Liu,Zhengwen Yang
标识
DOI:10.1007/s40843-023-2647-1
摘要
Rare earth-doped luminescent materials suffer from thermal quenching (TQ) at high temperatures, greatly limiting their application in the high-temperature region. In this work, we prepared Yb2W3O12:Er negative thermal expansion (NTE) materials, achieving thermal enhancement of upconversion (UC) and near-infrared (NIR) downshift (DS) luminescence upon 980-nm excitation. When the temperature increased from 293 to 573 K, the green UC luminescence of Er3+ increased by 27 times, and the NIR DS luminescence increased by 87 times. The in situ temperature-dependent X-ray diffraction showed that the unit cell volume of Yb2W3O12:Er3+ samples decreased as the temperature increased, which reduced the distance between rare earth ions and increased the energy transfer. We further prepared NTE Yb2W3O12:Er phosphor and positive thermal expansion (PTE) CaWO4:Yb/Er phosphor, which enhanced the relative luminescence intensity through thermal enhancement of NTE Yb2W3O12:Er phosphor and TQ of PTE CaWO4:Yb/Er phosphor. The mixed phosphor addresses the limitations of TQ and thermal coupling energy of temperature sensors for non-contact fluorescence intensity ratio (FIR) thermometers. The maximum relative sensitivity (Sr) was 2.04% K−1, 2.15% K−1, 2.01% K−1, and 2.09% K−1 in the infrared-red FIR (I860/I525, I860/I675, I1550/I525, and I1550/I675), respectively, indicating its practical application in temperature sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI