Deep bi-directional information-empowered ship trajectory prediction for maritime autonomous surface ships

深度学习 循环神经网络 人工神经网络 计算机科学 弹道 人工智能 序列(生物学) 机器学习 物理 天文 生物 遗传学
作者
Huanhuan Li,Wenbin Xing,Hang Jiao,Zaili Yang,Yan Li
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:181: 103367-103367 被引量:8
标识
DOI:10.1016/j.tre.2023.103367
摘要

It is critical to have accurate ship trajectory prediction for collision avoidance and intelligent traffic management of manned ships and emerging Maritime Autonomous Surface Ships (MASS). Deep learning methods for accurate prediction based on AIS data have emerged as a contemporary maritime transportation research focus. However, concerns about its accuracy and computational efficiency widely exist across both academic and industrial sectors, necessitating the discovery of new solutions. This paper aims to develop a new prediction approach called Deep Bi-Directional Information-Empowered (DBDIE) by utilising integrated multiple networks and an attention mechanism to address the above issues. The new DBDIE model extracts valuable features by fusing the Bi-directional Long Short-Term Memory (Bi-LSTM) and the Bi-directional Gated Recurrent Unit (Bi-GRU) neural networks. Additionally, the weights of the two bi-directional units are optimised using an attention mechanism, and the final prediction results are obtained through a weight self-adjustment mechanism. The effectiveness of the proposed model is verified through comprehensive comparisons with state-of-the-art deep learning methods, including Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Bi-LSTM, Bi-GRU, Sequence to Sequence (Seq2Seq), and Transformer neural networks. The experimental results demonstrate that the new DBDIE model achieves the most satisfactory prediction outcomes than all other classical methods, providing a new solution to improving the accuracy and effectiveness of predicting ship trajectories, which becomes increasingly important in the era of the safe navigation of mixed manned ships and MASS. As a result, the findings can aid the development and implementation of proactive preventive measures to avoid collisions, enhance maritime traffic management efficiency, and ensure maritime safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好斓发布了新的文献求助30
刚刚
花花世界J发布了新的文献求助10
1秒前
2秒前
2秒前
李健应助子车半邪采纳,获得20
2秒前
充电宝应助科研迪采纳,获得10
3秒前
3秒前
墩子完成签到,获得积分10
3秒前
poison完成签到,获得积分10
3秒前
星空完成签到 ,获得积分10
4秒前
科研通AI5应助阿敬采纳,获得10
4秒前
xxxHolic41完成签到,获得积分10
4秒前
5秒前
刘佳敏完成签到 ,获得积分10
5秒前
大维C完成签到,获得积分10
5秒前
tanglu发布了新的文献求助10
6秒前
6秒前
彭于晏应助zhangyin2024采纳,获得10
6秒前
墩子发布了新的文献求助10
6秒前
雪白水池完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助女娇娥采纳,获得10
8秒前
科研通AI5应助圆圆明越采纳,获得30
8秒前
兔兔发布了新的文献求助10
9秒前
Accept完成签到,获得积分10
9秒前
灵巧的绮菱完成签到 ,获得积分10
9秒前
10秒前
qiannnn发布了新的文献求助10
10秒前
科研通AI5应助余晖霞光采纳,获得10
10秒前
YYY完成签到,获得积分10
10秒前
科研小兵发布了新的文献求助10
11秒前
Lucas应助Yqx采纳,获得10
11秒前
洪流完成签到,获得积分10
11秒前
202211010668发布了新的文献求助20
12秒前
科研通AI5应助dablack采纳,获得10
12秒前
13秒前
13秒前
14秒前
14秒前
jiaozhiping完成签到,获得积分10
14秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Oribatid mites in Burmese amber I. First record of the family Achipteriidae (Acariformes, Oribatida) in Cretaceous amber, with the description of a new species of Cerachipteria Grandjean, 1935 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725821
求助须知:如何正确求助?哪些是违规求助? 3270855
关于积分的说明 9969218
捐赠科研通 2986238
什么是DOI,文献DOI怎么找? 1638149
邀请新用户注册赠送积分活动 777978
科研通“疑难数据库(出版商)”最低求助积分说明 747365