Modeling and optimization of spray drying process parameters using artificial neural network and genetic algorithm for the production of probiotic (Lactiplantibacillus plantarum) finger millet milk powder

响应面法 人工神经网络 喷雾干燥 麦芽糊精 食品科学 数学 工艺工程 计算机科学 机器学习 生物技术 化学 工程类 色谱法 生物
作者
S. S. Yadav,Sabyasachi Mishra
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (1) 被引量:4
标识
DOI:10.1111/jfpe.14505
摘要

Abstract Consumers have been more inclined towards functional food due to various health issues. Non‐dairy‐based probiotic milk could be the potential alternative to fulfill consumer demand. Spray drying of functional health drinks could enhance the shelf life and reduce the transportation cost of developed food powder. The current study was focused on the modeling and optimization of spray‐drying process parameters using an artificial neural network (ANN) coupled with a genetic algorithm (GA). The data so obtained using ANN‐GA was also compared with the data obtained using response surface methodology (RSM) coupled with desirability function (DF). The results indicated that the ANN model was better at predicting the response parameters compared to the RSM model with a higher correlation coefficient ( R ) of .9997, .9994, .9964, and .9992 for training, testing, validation, and all datasets, respectively. The optimum conditions obtained using RSM‐DF were 160.41°C of inlet air temperature, 33.77% of maltodextrin content, and 138.79 mL/h of feed rate while that for ANN‐GA were 160.87°C, 20%, and 200 mL/h. The RSM‐DF method proved to be better for the optimization of response parameters. Therefore method selection for modeling and optimization of process and response parameters must be based on fulfilling the specific criteria. Practical Applications Non‐dairy milk production has gained popularity in the area of research and product development. Various process protocols have been reported to produce high‐quality non‐dairy milk to fulfill the demand for a vegan diet. However, nutrient bioavailability, longer shelf life, product stability, and consumer acceptability are hard to obtain from cereal‐based non‐dairy milk. The current study contributes to produce spray‐dried milk powder followed by fermentation at optimum drying conditions with good quality and stability. The process has been modeled and optimized in the study using advanced statistical tools such as ANN‐GA and RSM‐DF. They can effectively predict the quality parameters and determine the optimal conditions for new experimental data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Kk采纳,获得10
刚刚
懒大王发布了新的文献求助10
刚刚
1秒前
1秒前
linjt完成签到 ,获得积分10
1秒前
罗小马完成签到,获得积分10
2秒前
David发布了新的文献求助10
2秒前
大气的远望应助蓝天采纳,获得10
2秒前
小二郎应助小贾采纳,获得10
3秒前
3秒前
小蘑菇应助王川采纳,获得10
3秒前
4秒前
可爱的函函应助落寞灵安采纳,获得10
4秒前
高行健发布了新的文献求助10
5秒前
chengxiong发布了新的文献求助20
5秒前
5秒前
清純男高中生完成签到,获得积分10
6秒前
所所应助RBT采纳,获得10
6秒前
Akim应助无语的千儿采纳,获得10
6秒前
beili完成签到,获得积分10
6秒前
张焕完成签到,获得积分10
7秒前
8秒前
9秒前
盛夏蔚来完成签到 ,获得积分10
9秒前
9秒前
lemon完成签到,获得积分10
9秒前
上官若男应助yahosun采纳,获得10
10秒前
10秒前
11秒前
11秒前
12秒前
鲤鱼夜南完成签到,获得积分10
12秒前
景吉梅完成签到,获得积分20
12秒前
13秒前
善学以致用应助由天与采纳,获得10
13秒前
Ivory完成签到,获得积分10
14秒前
冯冯发布了新的文献求助10
14秒前
微笑的井发布了新的文献求助10
15秒前
落寞灵安发布了新的文献求助10
15秒前
David完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577962
求助须知:如何正确求助?哪些是违规求助? 4663005
关于积分的说明 14744036
捐赠科研通 4603644
什么是DOI,文献DOI怎么找? 2526587
邀请新用户注册赠送积分活动 1496181
关于科研通互助平台的介绍 1465642