Aerodynamic optimization of hypersonic blunted waveriders based on symbolic regression

空气动力学 前沿 升力系数 Lift(数据挖掘) 高超音速 计算机科学 升阻比 气动加热 GSM演进的增强数据速率 控制理论(社会学) 工程类 航空航天工程 机械 物理 人工智能 传热 湍流 雷诺数 数据挖掘 控制(管理)
作者
Shuai-Qi Guo,Liu Wen,Chen-An Zhang,Yang Liu,Famin Wang
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:144: 108801-108801 被引量:2
标识
DOI:10.1016/j.ast.2023.108801
摘要

The previous waverider optimization was mainly focused on the original configuration with sharp leading edge. In actual application, the leading edge must be blunted for hypersonic flight, which can change the aerodynamic performance significantly. Thus, the optimum waverider with sharp leading edge doesn't mean that it's still optimum after bluntness. To solve the problem, this paper first investigates the influence mechanism of leading edge bluntness on the aerodynamic performance of the waveriders in detail. And the novel methodology of symbolic regression is employed to establish an analytical pressure increment model for the original waverider caused by the bluntness effects. Then an efficient aerodynamic model for the blunted waverider is constructed by combining traditional approximate methods and the pressure increment model, which is further incorporated into the Genetic Algorithm optimization framework. Results show that the resulting blunted optimized waveriders have distinctly different shapes and better aerodynamic performance compared to previous optimization that considers only sharp leading edge. And as the bluntness radius or the design lift increases, the improvement of lift-to-drag ratio (L/D) turns larger. Finally, when the center of pressure is constrained during the optimization, the blunted optimized waverider exhibits both better trim characteristic and higher L/D.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米娅完成签到,获得积分10
刚刚
刚刚
强健的妙菱完成签到,获得积分10
1秒前
1秒前
小蘑菇应助温柔若采纳,获得10
1秒前
李爱国应助通~采纳,获得10
1秒前
经竺应助小马哥采纳,获得10
1秒前
3秒前
单纯的芷蝶完成签到,获得积分10
3秒前
研友完成签到,获得积分10
3秒前
勤奋若风完成签到,获得积分10
3秒前
英姑应助每天都想下班采纳,获得10
4秒前
shooin完成签到,获得积分10
4秒前
佳佳发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
lin完成签到,获得积分20
5秒前
思源应助科研民工采纳,获得10
5秒前
忧郁凌波完成签到,获得积分10
5秒前
姜姜姜完成签到 ,获得积分10
6秒前
凶狠的绿兰完成签到,获得积分10
7秒前
多多少少忖测的情完成签到,获得积分10
7秒前
科研通AI5应助兴奋的宛白采纳,获得10
8秒前
9秒前
zhanlonglsj发布了新的文献求助10
9秒前
9秒前
芍药完成签到,获得积分10
9秒前
Yogita完成签到,获得积分10
10秒前
DoctorYan完成签到,获得积分10
10秒前
Adler完成签到,获得积分10
10秒前
11秒前
坐宝马吃地瓜完成签到 ,获得积分10
11秒前
SciGPT应助Strike采纳,获得10
11秒前
自强不息完成签到,获得积分10
11秒前
12秒前
czq发布了新的文献求助30
12秒前
望春风完成签到,获得积分10
12秒前
12秒前
huangJP完成签到,获得积分10
13秒前
情怀应助Tira采纳,获得10
13秒前
王阳洋完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740